My research focuses on the regulation of plants response to environment at the molecular level. In particular, I am interested in the regulation of gene expression. I study how the networks regulating the expression of genes are rewired in response to environment, and which forces are driving their evolution. During my postdoctoral studies, I was awarded a Marie Skłodowska-Curie Individual Fellowship Marie Skłodowska-Curie Individual Fellowship to assess the role of polygenic adaptation that targets the regulation of gene expression in the evolution of polygenic characters, by using a combination of systems biology and population genetics approaches. I am now working at INRAE in the GQE-Le Moulon laboratory, where I mainly use maize response to abiotic constraints such as water deficit and nitrogen deficit as a model. I recently was awarded a Young Researcher ANR ANR grant to tackle the question of whether better understanding gene regulatory networks rewiring in maize in response to water deficit will help build more accurate yield prediction models.
PhD in Population Genomics and Epigenomics, 2015
Institut Pasteur, Paris, France
Master in Biosciences, 2011
École normale supérieure de Lyon, Lyon, France
Licence (Bachelor) in Fundamental Biology, 2009
École normale supérieure de Lyon, Lyon, France
The adaptation of populations to local environments often relies on the selection of optimal values for polygenic traits. Here, we first summarize the results obtained from different quantitative genetics and population genetics models, about the genetic architecture of polygenic traits and their response to directional selection. We then highlight the contribution of systems biology to the understanding of the molecular bases of polygenic traits and the evolution of gene regulatory networks involved in these traits. Finally, we discuss the need for a unifying framework merging the fields of population genetics, quantitative genetics and systems biology to better understand the molecular bases of polygenic traits adaptation.
Enhancers are key players in the spatio-temporal coordination of gene expression during numerous crucial processes, including tissue differentiation across development. Characterizing the transcription factors (TFs) and genes they connect, and the molecular functions underpinned is important to better characterize developmental processes. In plants, the recent molecular characterization of enhancers revealed their capacity to activate the expression of several target genes. Nevertheless, identifying these target genes at a genome-wide level is challenging, particularly for large-genome species, where enhancers and target genes can be hundreds of kilobases away. Therefore, the contribution of enhancers to plant regulatory networks remains poorly understood. Here, we investigate the enhancer-driven regulatory network of two maize tissues at different stages: leaves at seedling stage (V2-IST) and husks (bracts) at flowering. Using systems biology, we integrate genomic, epigenomic, and transcriptomic data to model the regulatory relationships between TFs and their potential target genes, and identify regulatory modules specific to husk and V2-IST. We show that leaves at the V2-IST stage are characterized by the response to hormones and macromolecules biogenesis and assembly, which are regulated by the BBR/BPC and AP2/ERF TF families, respectively. In contrast, husks are characterized by cell wall modification and response to abiotic stresses, which are, respectively, orchestrated by the C2C2/DOF and AP2/EREB families. Analysis of the corresponding enhancer sequences reveals that two different transposable element families (TIR transposon Mutator and MITE Pif/Harbinger) have shaped part of the regulatory network in each tissue, and that MITEs have provided potential new TF binding sites involved in husk tissue-specificity.
Background: Genome-wide association studies (GWASes) have identified many noncoding germline single-nucleotide polymorphisms (SNPs) that are associated with an increased risk of developing cancer. However, how these SNPs affect cancer risk is still largely unknown. Methods: We used a systems biology approach to analyse the regulatory role of cancer-risk SNPs in thirteen tissues. By using data from the Genotype-Tissue Expression (GTEx) project, we performed an expression quantitative trait locus (eQTL) analysis. We represented both significant cis- and trans-eQTLs as edges in tissue-specific eQTL bipartite networks. Results: Each tissue-specific eQTL network is organised into communities that group sets of SNPs and functionally related genes. When mapping cancer-risk SNPs to these networks, we find that in each tissue, these SNPs are significantly overrepresented in communities enriched for immune response processes, as well as tissue-specific functions. Moreover, cancer-risk SNPs are more likely to be ‘cores’ of their communities, influencing the expression of many genes within the same biological processes. Finally, cancer-risk SNPs preferentially target oncogenes and tumour-suppressor genes, suggesting that they may alter the expression of these key cancer genes. Conclusions: This approach provides a new way of understanding genetic effects on cancer risk and provides a biological context for interpreting the results of GWAS cancer studies.
Characterizing the collective regulatory impact of genetic variants on complex phenotypes is a major challenge in developing a genotype to phenotype map. Using expression quantitative trait locus (eQTL) analyses, we constructed bipartite networks in which edges represent significant associations between genetic variants and gene expression levels and found that the network structure informs regulatory function. We show, in 13 tissues, that these eQTL networks are organized into dense, highly modular communities grouping genes often involved in coherent biological processes. We find communities representing shared processes across tissues, as well as communities associated with tissue-specific processes that coalesce around variants in tissue-specific active chromatin regions. Node centrality is also highly informative, with the global and community hubs differing in regulatory potential and likelihood of being disease associated.
The genetic history of African populations is increasingly well documented, yet their patterns of epigenomic variation remain uncharacterized. Moreover, the relative impacts of DNA sequence variation and temporal changes in lifestyle and habitat on the human epigenome remain unknown. Here we generate genome-wide genotype and DNA methylation profiles for 362 rainforest hunter-gatherers and sedentary farmers. We find that the current habitat and historical lifestyle of a population have similarly critical impacts on the methylome, but the biological functions affected strongly differ. Specifically, methylation variation associated with recent changes in habitat mostly concerns immune and cellular functions, whereas that associated with historical lifestyle affects developmental processes. Furthermore, methylation variation[mdash]particularly that correlated with historical lifestyle[mdash]shows strong associations with nearby genetic variants that, moreover, are enriched in signals of natural selection. Our work provides new insight into the genetic and environmental factors affecting the epigenomic landscape of human populations over time.
Genome-wide scans for selection have identified multiple regions of the human genome as being targeted by positive selection. However, only a small proportion has been replicated across studies, and the prevalence of positive selection as a mechanism of adaptive change in humans remains controversial. Here we explore the power of two haplotype-based statistics–the integrated haplotype score (iHS) and the Derived Intraallelic Nucleotide Diversity (DIND) test–in the context of next-generation sequencing data, and evaluate their robustness to demography and other selection modes. We show that these statistics are both powerful for the detection of recent positive selection, regardless of population history, and robust to variation in coverage, with DIND being insensitive to very low coverage. We apply these statistics to whole-genome sequence data sets from the 1000 Genomes Project and Complete Genomics. We found that putative targets of selection were highly significantly enriched in genic and nonsynonymous single nucleotide polymorphisms, and that DIND was more powerful than iHS in the context of small sample sizes, low-quality genotype calling, or poor coverage. As we excluded genomic confounders and alternative selection models, such as background selection, the observed enrichment attests to the action of recent, strong positive selection. Further support to the adaptive significance of these genomic regions came from their enrichment in functional variants detected by genome-wide association studies, informing the relationship between past selection and current benign and disease-related phenotypic variation. Our results indicate that hard sweeps targeting low-frequency standing variation have played a moderate, albeit significant, role in recent human evolution.