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SUMMARY

Although all human tissues carry out common pro-
cesses, tissues are distinguished by gene expres-
sion patterns, implying that distinct regulatory pro-
grams control tissue specificity. In this study, we
investigate gene expression and regulation across
38 tissues profiled in the Genotype-Tissue Expres-
sion project. We find that network edges (transcrip-
tion factor to target gene connections) have higher
tissue specificity than network nodes (genes) and
that regulating nodes (transcription factors) are less
likely to be expressed in a tissue-specific manner
as compared to their targets (genes). Gene set
enrichment analysis of network targeting also indi-
cates that the regulation of tissue-specific function
is largely independent of transcription factor expres-
sion. In addition, tissue-specific genes are not highly
targeted in their corresponding tissue network. How-
ever, they do assume bottleneck positions due to
variability in transcription factor targeting and the
influence of non-canonical regulatory interactions.
These results suggest that tissue specificity is driven
by context-dependent regulatory paths, providing
transcriptional control of tissue-specific processes.
INTRODUCTION

Although all human cells carry out common processes that are

essential for survival, in the physical context of their tissue envi-

ronment, they also exhibit unique functions that help define

their phenotype. These common and tissue-specific processes

are ultimately controlled by gene regulatory networks that alter

which genes are expressed and control the extent of that expres-

sion. While tissue specificity is often described based on gene

expression levels, we recognize that, by themselves, individual

genes, or even sets of genes, cannot adequately capture the

variety of processes that distinguish different tissues. Rather,
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biological function requires the combinatorial involvement of

multiple regulatory elements, primarily transcription factors,

that work together with other genetic and environmental factors

to mediate the transcription of genes and their protein products

(Vaquerizas et al., 2009).

Gene regulatory network modeling provides a mathematical

framework that can summarize the complex interactions among

transcription factors, genes, and gene products (Barabási and

Oltvai, 2004; Gerstein et al., 2012). Despite the complexity of

the regulatory process, the most widely used network modeling

methods are based on pairwise gene co-expression information

(Zhang and Horvath, 2005; Zhang et al., 2012). While these cor-

relation-based networks may provide some biological insight

concerning the associations between both tissue-specific and

other genes (Pierson et al., 2015; Yang et al., 2014), they do

not explicitly model key elements of the gene regulatory process.

Passing Attributes between Networks for Data Assimilation

(PANDA) is an integrative gene regulatory network inference

method that models the complexity of the regulatory process,

including interactions between transcription factors and their

targets (Glass et al., 2013). PANDA uses a message-passing

approach to optimize an initial network between transcription

factors and target genes by integrating it with gene co-expres-

sion and protein-protein interaction information. In contrast to

other network approaches, PANDA does not directly incorporate

co-expression information between regulators and targets.

Instead, edges in PANDA-predicted networks reflect the overall

consistency between a transcription factor’s canonical regula-

tory profile and its target genes’ co-expression patterns. A num-

ber of studies have shown that analyzing the structure of the

regulatory networks estimated by PANDA can help elucidate

the regulatory context of genes and transcription factors and

provide insight into the associated biological processes (Glass

et al., 2014, 2015; Vargas et al., 2016).

The transcriptomic data produced by the Genotype-Tissue

Expression (GTEx) consortium (Consortium, 2015) provide us

with an unprecedented opportunity to investigate the complex

regulatory patterns important for maintaining the diverse func-

tional activity of genes across different tissues in the human

body (Melé et al., 2015). These data include high-throughput

RNA sequencing (RNA-seq) information from 551 research
ports 21, 1077–1088, October 24, 2017 ª 2017 The Authors. 1077
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subjects, sampled from 51 postmortem body sites, and cell lines

derived from two tissue types.

In this study, we apply PANDA to infer gene regulatory net-

works for 38 different tissues by integrating GTEx RNA-seq

data with a canonical set of transcription factors to target gene

edges and protein-protein interactions. We then use these tissue

networks to identify tissue-specific regulatory interactions, to

study the tissue-specific regulatory context of biological func-

tion, and to understand how tissue specificity manifests itself

within the global regulatory framework. By studying the structure

of these networks and comparing them between tissues, we are

able to gain several important insights into tissue-specific gene

regulation. Our overall approach is summarized in Figure 1.

RESULTS

Identifying Tissue-Specific Network Edges
We started by reconstructing genome-wide regulatory networks

for each human tissue. We began by downloading GTEx RNA-

seq data (Consortium, 2015). After filtering and quality control,

these RNA-seq data included expression information for

30,243 genes measured across 9,435 samples and 38 distinct

tissues (Paulson et al., 2017). For each tissue, we used PANDA

to integrate gene-gene co-expression information from these

data with an initial regulatory network of 644 transcription factors

(Weirauch et al., 2014) and transcription factor protein-protein in-

teractions (Szklarczyk et al., 2015). This resulted in 38 recon-

structed gene regulatory networks, one for each tissue.

We used these reconstructed networks to identify just over

five million tissue-specific edges (26.1% of all possible edges;

Figure S1A; Table S1). We compared these tissue-specific

edges with other available sources of tissue-specific network re-

lationships (Greene et al., 2015) (see the Supplemental Experi-

mental Procedures and Figure S2), and we found minimal over-

lap, indicating that these edges highlight regulatory interactions

that have not been previously explored. Figure 2A shows the

number of edges identified as specific in each of the 38 tissues,

colored based on their multiplicity, or the number of tissues in

which an edge is identified as specific. We found that the major-

ity of tissue-specific edges (65.7%) have a multiplicity of one,

meaning they are uniquely identified as specific in only a single

tissue.

Higher edgemultiplicity is often indicative of shared regulatory

processes between tissues. For example, 92.2% of sigmoid co-

lon-specific edges have a multiplicity greater than one, meaning

they are also called specific in other tissues. Further investigation

(Figure S2A) indicated that 81.0%of these edges are sharedwith

the transverse colon, 46.6% are shared with the small intestine,

and 19.3% are shared with the stomach. Similarly, of those

edges called specific in the basal ganglia subregion of the brain,

13.3% and 43.3% were also identified as specific in the cere-

bellum and other subregions of the brain, respectively.

For other tissues the composition of shared edges is quite

complex. For example, 78.0% of edges identified as specific

in the aorta have a multiplicity greater than one. Of these, the

largest fraction is specific to the tibial artery. However, this

only includes 14.9% of the aorta-specific edges; additional

edges are shared with the testis (12.2%), coronary artery
1078 Cell Reports 21, 1077–1088, October 24, 2017
(11.4%), ovary (8.9%), kidney (8.0%), and other brain subregions

(7.7%). This shows that, even in cases where many of the edges

identified as specific in a given tissue have a high multiplicity, as

a set, these edges are often distinct from the other tissues.

Identifying Tissue-Specific Network Nodes
Since most analyses of tissue specificity have examined gene

expression, we wanted to know whether the patterns that we

observed for the tissue-specific network edges could also be

found in tissue-specific expression information. Therefore, we

used the GTEx expression data to identify 12,586 tissue-specific

genes (41.6% of all genes; see Figures S1B and S1C and

Table S2); 558 of these genes code for transcription factors

(30.6% of transcription factors in our expression data), including

222 (34.5%) of the 644 transcription factors that we used in

constructing our network models (see the Supplemental Exper-

imental Procedures and Table S3).

We found that the number of genes and transcription factors

identified as tissue specific based on expression is not corre-

lated with the number of tissue-specific edges (Figures

2B and 2C; Figure S3). We also observed much higher multiplic-

ity levels for network nodes than for the edges (p < 10�15 for both

genes and transcription factors by two-sample chi-square [c2]

test), indicating that genes and transcription factors are more

likely to be identified as specific in multiple tissues than are reg-

ulatory edges.

As with the edges, node multiplicity provides insight into

shared functions among the tissues. Consistent with previous

findings, testis has the largest number of tissue-specific genes

(Djureinovic et al., 2014; Schultz et al., 2003), and we found

that many of the genes identified as specific in other tissues

are also identified as specific in the testis (Figure S2B). Other

shared patterns of expression mirror what we observed among

the network edges. For example, genes identified as specific in

the basal ganglia brain subregion include those that are also

identified as specific in the cerebellum (41.1%), other brain sub-

regions (67.9%), and the pituitary gland (24.6%). Similarly,

50.4% and 31.3% of sigmoid-colon-specific genes are shared

with the transverse colon and the small intestine, respectively.

However, these genes also include those identified as specific

in the prostate (23.5%), esophagus (22.6% in the muscularis

and 14.8% in the gastresophageal junction), uterus (18.3%), kid-

ney (14.8%), vagina (13.0%), and stomach (13.0%).

The overlap of genes identified as specific in multiple tissues

is quite complex, and there are many cases of shared expres-

sion patterns between tissues that are not reflected in the tis-

sue-specific network edges we had previously identified. This

is especially true for the transcription factor regulators in our

network model (Figure S2C). For example, only a single tran-

scription factor (TBX20) was identified as tissue specific in the

aorta based on our expression analysis. This transcription factor

(Hammer et al., 2008; Shen et al., 2013) has a high level of mul-

tiplicity, andwas also identified as specific in the coronary artery,

testis, pituitary, and heart (both the atrial appendage and left

ventricle regions; see Table S3 and Figure S2C). We found

similar patterns in many of the other tissues, including the coro-

nary artery, subcutaneous adipose, esophagusmuscularis, tibial

nerve, tibial artery, and the visceral adipose. Each of these



Figure 1. Schematic Overview of Our Approach

Wecharacterized tissue-specific gene regulation startingwithGTEx gene expression data; the relative sample size of each of the 38 tissues in the expression data

is shown in the color bar. We then used PANDA to integrate this information with protein-protein interaction (PPI) and transcription factor (TF) target information,

producing 38 inferred gene regulatory networks, one for each tissue.We identified tissue-specific genes, transcription factors, and regulatory network edges, and

we analyzed their properties within and across these networks.
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A B C Figure 2. Tissue Specificity of Network Ele-

ments

(A–C) Bar plots illustrating the number of edges

(A), genes (B), and transcription factors (TFs) (C)

that were identified as specific to each of the 38

GTEx tissues. The number of elements identified

as specific in each tissue is shown to the right of

each bar. The multiplicity of edges, genes, and

TFs is indicated by the color of the bars. Note that

an edge/gene/TF with a given multiplicity across

all tissues (top bar plots) will appear in that

number of tissue-specific bar plots (lower bar

plots). See also Tables S1, S2, and S3 and Fig-

ures S1–S4.
tissues has only two or three associated tissue-specific tran-

scription factors, and almost all of these transcription factors

have a multiplicity greater than one, meaning that they were

identified as having relatively higher levels of expression in mul-

tiple different tissues.

Directly comparing the number of identified tissue-specific

transcription factors and genes reveals that there are signifi-

cantly fewer tissue-specific transcription factors than one would

expect by chance (p = 2.0 3 10�4 by two-sample c2 test). In

addition, transcription factor multiplicity levels are significantly

higher than those of genes (p = 1.25 3 10�10 by two-sample

c2 test). In other words, transcription factors are less likely to

be identified as tissue specific compared to genes based on

expression profiles. These results imply that tissue-specific

regulation may not be due to selective differential expression

of transcription factors between tissues.

It should be noted that the transcription factors we identified

as tissue specific based on the GTEx expression data are sub-

stantially different than those listed in a previous publication (Va-

querizas et al., 2009) (Figure S4) and used in other GTEx network

evaluations (Pierson et al., 2015). Although state of the art at the

time, the data used in this previous publication contained only

two samples per tissue and was based on a microarray platform

that only assayed expression for a subset of the genes used in

our analysis. The differences we found with this previous work

highlight the importance of the GTEx project and the opportunity

it gives us to revisit our understanding of the role of transcription

factors in mediating tissue specificity.
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Characterizing Relationships
between Tissue-Specific Network
Elements
We tend to think about tissue specificity in

terms of gene expression. However, we

know that gene expression arises from a

complex set of regulatory interactions be-

tween transcription factors and their

target genes. The networks inferred from

the GTEx data provided us with a unique

opportunity to characterize the relation-

ship among the tissue-specific ele-

ments—edges, genes, and transcription

factors—that help to define tissue pheno-

type and function.
To do this, we first determined the number of tissue-specific

nodes (genes and transcription factors) that are connected to

at least one tissue-specific edge. Overall, we found approxi-

mately 56% of tissue-specific genes are directly connected to

at least one tissue-specific edge (Table S4), meaning that tissue

specificity in gene expression is generally associated with tis-

sue-specific changes in regulatory processes. In contrast, tis-

sue-specific transcription factors are always connected to at

least one tissue-specific edge, meaning that they are always

associated with a tissue-specific regulatory process. In fact,

we found that nearly every transcription factor is associated

with at least one tissue-specific edge in all 38 tissues. This sug-

gests that even transcription factors that are similarly expressed

across tissues, and thus not identified as tissue specific, may

play an important role in mediating tissue-specific regulation.

We next quantified the association of tissue-specific edges

with tissue-specific nodes. We found very high enrichment for

tissue-specific edges targeting tissue-specific genes, especially

for the most specific edges—those with lower multiplicity values

(Figure 3A). Althoughwe also observed strong enrichment for tis-

sue-specific edges originating from tissue-specific transcription

factors (Figure 3B), this was substantially lower than the enrich-

ment we observed between tissue-specific edges and genes.

Finally, we analyzed tissue-specific edges in the context of the

input data we used to seed PANDA and reconstruct our net-

works. We found that tissue-specific edges are distinct from

those identified using only co-expression information (Fig-

ure S2D). In addition, tissue-specific edges were depleted for



A B C Figure 3. Enrichment of Tissue-Specific

Edges

(A–C) The log2 of the number of observed/

expected edges of different multiplicities (0 = non-

tissue specific) connected to tissue-specific (TS)

genes (A) and tissue-specific transcription factors

(TFs) (B) or overlapping with canonical regulatory

interactions (C). See also the Supplemental Exper-

imental Procedures and Table S4.
canonical transcription factor interactions (Figure 3C). Thus,

many of the tissue-specific regulatory interactions we identified

using PANDA would have been missed if we had relied solely

upon co-expression or transcription factor motif targeting infor-

mation to define a regulatory network.

Evaluating Tissue-Specific Regulation of Biological
Processes
As noted previously, we found that transcription factors are

less likely than other genes to be identified as tissue specific

based on their expression profile, and even those identified

as tissue specific tended to have a high multiplicity. In addition,

although tissue-specific transcription factors are significantly

associated with tissue-specific network edges, this associa-

tion is much lower than the one between tissue-specific genes

and edges. These results led us to hypothesize that both

tissue-specific and non-tissue-specific transcription factors

play an important role in mediating tissue-specific biological

processes.

We selected one of the brain tissue subregions (‘‘brain other’’)

to test this hypothesis, since this tissue had one of the largest

number of tissue-specific edges and the majority of genes and

transcription factors called as specific to this tissue are also spe-

cific in other tissues (see Figure 2). We ran a pre-ranked gene set

enrichment analysis (Subramanian et al., 2005) on each tran-

scription factor’s targeting profile in this tissue to evaluate the

role of transcription factors in regulating particular biological

processes.

Figure 4A shows the gene ontology (GO) biological process

terms that were significantly enriched (false discovery rate

[FDR] < 0.001; gene set enrichment analysis enrichment score

[ES] > 0.65) for tissue-specific targeting by at least one transcrip-

tion factor in this brain tissue subregion. These included axono-

genesis, axon guidance, regulation of neurogenesis, regulation

of neurotransmitter levels, and neurotransmitter secretion. We

found that transcription factor regulators are generally associ-

ated with either an increased or decreased targeting of genes

in these pathways. To our surprise, the transcription factors

that were positively associated with brain-related functions

were not any more likely to be expressed in a tissue-specific

manner than transcription factors that were not positively asso-

ciated with these functions.

To ensure this result was not due to the threshold we

used when identifying tissue-specific transcription factors, we

selected the ten transcription factors with the highest and lowest
expression enrichment in this brain tissue subregion and per-

formed a detailed investigation of their gene set enrichment

analysis profiles (Figure 4B). NEUROD2 and SP8 were the top

tissue-specific transcription factors with brain function-associ-

ated targeting profiles and play important roles in brain function

(Dixit et al., 2016; Ma et al., 2013; Olson et al., 2001). In addition,

four of the highly non-tissue-specific transcription factors (based

on expression), GRHL1, KLF15, PAX3, and TET1, had positive

enrichment for targeting genes with relevant brain functions.

These non-brain-specific transcription factors have been shown

to play an important role in neuroblastoma (Fabian et al., 2014),

neuronal differentiation (Ohtsuka et al., 2011), brain development

(Mansouri et al., 2001), and neuronal cell death (Zhang et al.,

2013), respectively.

Finally, we identified 38 transcription factors that exhibit highly

significant (FDR < 0.001 and ES > 0.65) differential targeting of

the identified functions. Only one of these transcription factors

(RFX4) was also identified as tissue specific based on expression

analysis. When we repeated this analysis for all 38 tissues, we

found similar patterns, with low overlap between the transcrip-

tion factors identified as tissue specific based on expression

and those that have strong patterns of differential targeting

(Figure S5; Table S5). These results indicate that transcription

factors do not have to be differentially expressed to play signifi-

cant tissue-specific regulatory roles. Rather, changes in their tar-

geting patterns allow them to regulate tissue-specific biological

processes.

Tissue-Specific Organization of Biological Processes
Because of the high level of transcription factor multiplicity we

previously observed (see Figure 2), we next examined functional

regulation based on shared tissue-specific targeting patterns

across the tissues. We ran gene set enrichment analysis on the

tissue-specific targeting profile of each transcription factor in

each of the 38 tissues. We then clustered the identified signifi-

cant associations (Clauset et al., 2004) to identify 48 commu-

nities or groups of GO terms associated with transcription

factor/tissue pairs (Figure 5A; Figure S6; Table S6).

Nine communities had more than five associated GO terms.

Further inspection showed that these communities often

included sets of highly related functions, such as those associ-

ated with immune response (community 1), cell proliferation

(community 2), synaptic transmission (community 3), extracel-

lular structure (community 4), cellular respiration (community 5),

ectoderm development (community 6), protein modification
Cell Reports 21, 1077–1088, October 24, 2017 1081



A B Figure 4. Tissue-Specific Targeting in Brain

(A) A hierarchical clustering (Euclidean distance,

complete linkage) and heatmap depicting the gene

set enrichment analysis results for tissue-specific

targeting of all 644 transcription factors in

the ‘‘brain other’’ gene regulatory network. FDR

values for positive enrichment scores, indicating

increased targeting, are shown in red; negative

scores are in blue. FDR values greater than 0.25

appear in white. The top bar indicates whether a

transcription factor was also identified as specific

(black) to brain other or not (gray).

(B) Heatmap for the 10 most (black) and 10 least

(gray) tissue-specific transcription factors.

AC, adenylate cyclase; act., activating pathway;

reg., regulation; fam., family; MP, metabolic pro-

cess. See also Table S5.
(community 7), cellular response (community 8), and the mito-

chondrion (community 9).

We used word clouds to summarize this information and pro-

vide a snapshot of the functions associated with each of these

communities (Figure 5B). We also examined what tissues were

associated with each community, and we found that commu-

nities were generally dominated by enrichment for increased

functional targeting in a select set of tissues (Figure 5C). For

example, community 1 was highly associated with the tibial

and coronary arteries, community 3 was highly associated with

two of the brain subregions (brain other and brain basal ganglia)

as well as the adrenal gland and stomach, and community 4 was

highly associated with skeletal muscle as well as the kidney

cortex. Although some of the communities represent sets of

functions that are common to multiple tissues, these associa-

tions make biological sense. For example, some tissues, such

as skin and whole blood, have higher rates of proliferation

compared to others, and sowemight expect increased targeting

of cell cycle functions in these tissues.

The remaining 39 communities had five or fewer GO term

members, but they often captured important associations be-

tween tissues and biological function. For example, community

17 contained two GO biological process term members, ‘‘sper-

matid development’’ and ‘‘spermatid differentiation,’’ and was

enriched for positive tissue-specific targeting in the testis

(12 transcription factors). Community 21 contained exactly one

term member, ‘‘digestion,’’ and was enriched for positive

tissue-specific targeting in the sigmoid colon (25 transcription

factors). Community 25 also contained exactly one GO term,

‘‘hormone metabolic process,’’ and was enriched for positive

tissue-specific targeting in the pituitary (7 transcription factors,

including FEZF1, HOXA13, NRL, POU3F4, SIX3, SOX2, and

SRY).

In addition to identifying tissue-specific function, we identified

several transcription factors that appear to mediate similar

biological functions across multiple tissues (Figure 5D). For

example, community 1 (immune response) included targeting

profiles from 340 different transcription factors and 23 tissues;

further inspection revealed that five of these transcription factors

have significantly more associations in community 1 than one

would expect by chance. These transcription factors include

RFX5, which plays an essential role in the regulation of the major
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histocompatibility complex class II (MHC class II), a key compo-

nent of the adaptive immune system (Peijnenburg et al., 1999),

and YY1, which was recently reported to inhibit differentiation

and function of regulatory T cells (Hwang et al., 2016).

Maintenance of Tissue Specificity in the Global
Regulatory Framework
The analysis we have presented thus far has focused primarily

on tissue-specific network edges or regulatory interactions that

have an increased likelihood in one, or a small number of tissues,

compared to others. However, we know that these tissue-

specific interactions work within the context of a larger global

gene regulatory network, much of which is the same in many tis-

sues. Therefore, we investigated how tissue-specific regulatory

processes are reflected in changes to the overall structure and

organization of each tissue’s global gene regulatory network.

To begin, we analyzed the connectivity of nodes separately in

each of the 38 tissues’ gene regulatory networks using twomea-

sures: (1) degree, or the number of edges connected to a node;

and (2) betweenness (Girvan and Newman, 2002), or the number

of shortest paths passing through a node (Figure 6A). Although

both of these measures are well established in the field of

network science, betweenness in particular has only occasion-

ally been used to analyze biological networks (Pierson et al.,

2015; Yu et al., 2007), and it has not been used to assess tis-

sue-specific gene regulatory networks.

For each tissue, we compared the median degree and

betweenness values of tissue-specific genes to the median

degree and betweenness values of non-tissue-specific genes

(Figure 6B). This analysis showed that tissue-specific genes

generally have a lower degree than non-tissue-specific genes.

This may initially seem contradictory to our observation that tis-

sue-specific genes are highly targeted by tissue-specific edges

(Figure 3A). However, we also found that tissue-specific edges

tended to be associated with non-canonical regulatory events

(Figure 3C), which generally have lower weights in our network

models. The analysis presented here considers all regulatory

interactions (both tissue-specific and non-tissue-specific)

leading to a network whose structure is largely dominated by

canonical regulatory events. Thus, we can conclude that tis-

sue-specific genes gain targeting from tissue-specific edges,

consistent with our previous finding. However, in the context of
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Figure 5. Tissue-Specific Targeting across All Tissues

(A) Heatmap depicting the results from gene set enrichment analyses on targeting profiles for all possible transcription factor (TF)-tissue pairs, grouped by the

community assignment of the GO terms and TF-tissue pairs.

(B) Word clouds summarizing the processes contained in each community.

(C) An illustration of the tissues associated with each community. Edge width indicates the number of transcription factors identified as differentially targeting at

least one GO term in the community in a particular tissue. For simplicity, we only illustrate connections to tissues that include five or more transcription factors.

(D) Heatmap of transcription factors significantly associated with one of the nine largest communities; the grayscale gradient represents the probability that a

transcription factor would be associated with a community by chance given a random shuffling of community assignments.

See also Table S6 and Figures S5 and S6.
the global gene regulatory network, the targeting of these tissue-

specific genes is much lower as compared to other, non-tissue-

specific genes.

These findings are consistent with the notion that processes

required for a large number of (or all) tissues need to be stably

regulated. Thus, one might expect these to be more tightly

controlled and, therefore, central to the network. Indeed, when

we examined the distributions of degree values (Figure 6C), we

found the largest differences are between tissue-specific and

non-tissue-specific genes with high degree (network hubs),

with a bias for non-tissue-specific genes to have high degree

values. In other words, we observed a depletion of tissue-spe-

cific genes among the gene regulatory network hubs.

Our analysis also showed that tissue-specific genes have

higher median betweenness compared to non-tissue-specific

genes. This indicates that tissue-specific function may be medi-

ated by tissue-specific regulatory paths through the global

network structure, creating new avenues by which information

can flow through tissue-specific genes (as measured by
betweenness), despite their relatively low overall connectivity

(as measured by degree). Indeed, when we examined the distri-

bution of betweenness values (Figure 6C), we found that tissue-

specific genes are significantly enriched for small but measur-

able values, while non-tissue-specific genes are more likely to

have no shortest paths running through them (p < 10�15 by

one-sided Kolmogorov-Smirnov test). The signals we observed

here are absent in a network constructed solely based on canon-

ical transcription factor-target gene interactions (Figure S7),

suggesting that these regulatory paths are most likely the result

of the inclusion of tissue-specific edges in the global regulatory

network structure.

Implications of Tissue-Specific Regulation
One important reason for modeling tissue-specific regulatory

networks is to provide a baseline that can be used to better

understand how regulatory processes might be perturbed by

disease or in the presence of other biological factors, such as

a genetic variant (Boyle et al., 2017). To evaluate the utility of
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Figure 6. Centrality of Genes in Tissue-Specific Networks

(A) An example network illustrating the difference between high degree and betweenness. Transcription factors are shown as circles and target genes as squares.

The color of each node indicates its centrality. An example node is shown with low degree but high betweenness.

(B) Difference in the median centrality of tissue-specific (TS) genes compared to non-tissue-specific genes in each of the 38 networks.

(C) Distribution of centrality values for all non-tissue-specific genes (black), genes specific in a particular tissue (red), and genes called tissue specific in some

tissue, but not the tissue of interest (gray dashed line).

See also Figure S7.
our tissue-specific networks in the context of this type of infor-

mation, we leveraged tissue-specific, cis-acting expression

quantitative trait loci (eQTLs) that we had previously identified

using the GTEx data (Fagny et al., 2017), together with informa-

tion from genome-wide association studies (GWASes) curated in

the GWAS catalog. For this analysis, we focused on 19 tissues

for which we had reliable estimates of cis-eQTLs and the

29,155 genes that were considered when performing the eQTL

analysis and included in our network models.

To begin, for each tissue, we identified which genes had

at least one significant (FDR < 0.05) eQTL association. 25,819

genes (88.6%) had at least one eQTL association in at least

one of the tissues (from 3,317 in brain other to 10,997 in thyroid).

As a group, these QTL-associated genes were significantly en-

riched for transcription factors (p = 9.093 10�5 by hypergeomet-

ric probability) but significantly depleted for tissue-specific

genes (p < 10�15 by hypergeometric probability). However,

when we evaluated whether genes that are specific to a partic-

ular tissue are also more likely to have an eQTL association

in that same tissue, we observed a significant enrichment

(p = 1.69 3 10�14 by hypergeometric probability). This indicates

that, although tissue-specific genes as a group are less likely to

have associations with genetic variants, when they do, it is within

the context of their tissue environment.

Next, to understand if these findings might have disease rele-

vance, we focused on the subset of genes that had a significant

cis-eQTL association with one of the genetic variants listed in

the GWAS catalog. Only 308 genes (1%) had one or more eQTL

associationswith aGWASvariant (Table S7). Of these 308genes,

only 39 (12.7%) were also identified as tissue specific (signifi-

cantly depleted; p = 1.513 10�4 by hypergeometric probability).
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In contrast to the QTL-associated genes, the GWAS-associated

subset was neither enriched nor depleted for transcription fac-

tors. In addition, whenwe investigated whether the eQTL associ-

ations for these genes tended to occur in the same tissue inwhich

those genes were identified as specific, we observed significant

depletion (p = 5.46 3 10�4 by hypergeometric probability).

Finally, to understand how these findings might be reflected in

the context of our gene regulatory networks, we evaluated the

centralities of these genes, both within the tissue for which

they had the identified association(s) and across all other tissues

(those in which they did not have any significant eQTL associa-

tions). Specifically, we ranked genes in each tissue based on

their centrality, and we found the median rank of the QTL-asso-

ciated and GWAS-QTL-associated genes in both the tissue

where they had a significant association and in each of the other

tissues. We plotted the range of these median values across the

19 examined tissues in Figure 7.

We saw a clear signal for variant-associated genes in both

their degree and betweenness. In particular, genes that are

associated with a GWAS variant have a lower degree and

higher betweenness in their corresponding tissue network as

compared to the set of genes that has any eQTL association in

that tissue. Furthermore, this behavior is distinct in their corre-

sponding tissue network as opposed to other tissue networks.

We noted that this increase in betweenness coupled with a

decrease in degree is exactly the same pattern as the one we

observed for tissue-specific genes. However, interestingly, as

we noted above, GWAS-QTL-associated genes are highly

depleted for tissue specificity. This may help explain why many

GWAS loci are associated with multiple diseases. It also sug-

gests that our network models are capturing important routes



A

B

Figure 7. Centrality of eQTL-Associated Genes

(A and B) The median (dot) and interquartile range (error bar) across tissues of

the percentile rank of genes based on their degree (A) or betweenness (B)

centralities, as in Figure 6C, plotted separately for genes that have an eQTL

association (1) in that tissue (QTLs-in-tissue), (2) with a GWAS variant in that

tissue (GWAS-QTLs-in-tissue), (3) in another tissue (QTLs-in-other), or (4) with

a GWAS variant in another tissue (GWAS-QTLs-in-other). For comparison, the

median rank of tissue-specific and non-tissue-specific genes across these

tissues is indicated by red and black lines, respectively. Note that this analysis

is limited to 19 tissues and 29,155 genes. See also Table S7.
of regulatory information flow beyond those necessary for the

maintenance of tissue-specific processes and, thus, have the

potential to be used to understand disease-related regulatory

information.

DISCUSSION

We used gene expression data from GTEx, together with other

sources of regulatory information, to reconstruct and charac-

terize regulatory networks for 38 tissues and to assess tissue-

specific gene regulation. We used these networks to identify tis-

sue-specific edges, and we used the gene expression data to

identify tissue-specific nodes (transcription factors and genes).

We found that, although tissue-specific edges are enriched for

connections to tissue-specific transcription factors and genes,

they are also depleted for canonical interactions (defined based

on a transcription factor-binding site in the target gene’s pro-

moter). In addition, edges are often uniquely called as specific

in only one tissue while tissue-specific genes often have a high

multiplicity, meaning that they were identified as specific in

more than one tissue.

In particular, we found that genes that encode for transcription

factors were especially likely to be identified as specific in multi-

ple different tissues. This suggests that the notion of a tissue-

specific transcription factor based on expression information
should be considered with care, especially in the context of

transcriptional regulation. Indeed, analysis of tissue-specific

targeting patterns in our regulatory networks indicated that

transcription factor expression is not the primary driver of

tissue-specific functions. Our network analysis found many

transcription factors that are known to be involved in important

tissue-specific biological processes that were not identified as

tissue specific based on their expression profiles. These findings

are consistent with what we might expect (Neph et al., 2012).

There are approximately 30,000 genes in the human genome,

but fewer than 2,000 of these encode transcription factors

(Vaquerizas et al., 2009) (of which we analyzed only 644, those

with high-quality motif information). Given the large number of

tissue-specific functions that must be regulated, it makes sense

that changes in complex regulatory patterns are responsible for

tissue-specific gene expression, not the activation or deactiva-

tion of individual regulators.

Our results suggest that transcription factors primarily partici-

pate in tissue-specific regulatory processes via alterations in their

targeting patterns. To understand the regulatory context of these

tissue-specific alterations, we investigated the topology of each

of the 38 global tissue regulatory networks (containing informa-

tion for all possible edges). We found that tissue-specific genes

generally are less targeted (have a lower degree) than non-tis-

sue-specific genes. However, tissue-specific genes exhibit an in-

crease in the number of regulatory paths running through them

(have a higher betweenness) as compared to non-tissue-specific

genes. These results suggest that tissue-specific regulation does

not occur in dense portions of the regulatory network or by the

formation of tissue-specific hubs. Rather, tissue-specific genes

are central to the regulatory network on an intermediate scale

due to the influence of tissue-specific regulatory paths (Grano-

vetter, 1973). We believe this result supports the notion that tis-

sue-specific function is largely driven by non-canonical interac-

tions. Such interactions could, for example, be interactions

through transcription factor complexes (no direct binding be-

tween a transcription factor to the promoter of its target gene),

binding of a transcription factor to an alternative motif, or interac-

tions outside of a gene’s promoter (for example, binding to an

enhancer) (Fedorova and Zink, 2008).

Overall, our analysis provides a more comprehensive picture

of tissue-specific regulatory processes than reported previously.

Our comparison of global gene regulatory network models

across a large set of human tissues provided important insights

into the complex regulatory connections between genes and

transcription factors, allowed us to identify how those structures

are subtly different in each tissue, and ultimately led us to better

understand how transcription factors regulate tissue-specific

biological processes. One important result from our analysis is

that transcription factor expression information is very poorly

correlated with tissue-specific regulation of key biological func-

tions. At the same time, we found that alterations in transcription

factor targeting cause a shift in the structure of each tissue’s reg-

ulatory network, such that tissue-specific genes occupy central

positions by virtue of tissue-specific regulatory paths that run

through the global network structure.

Taken together, these results support the notion that tissue

specificity likely arises from adjusting and adapting existing
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biological processes. In other words, tissue-specific biological

function occurs as a result of building on an existing regulatory

structure such that both common and tissue-specific processes

share the same underlying network core. Ultimately, our work

suggests that regulatory processes need to be analyzed in the

context of specific tissues, particularly if we hope to understand

disease and development, to develop more effective drug

therapies and to understand the potential side effects of drugs

outside of the target tissue. It also establishes a framework in

which to think about the evolution of tissue-specific functions,

one in which new processes are integrated into an established

gene regulatory framework.

EXPERIMENTAL PROCEDURES

GTEx Data

We downloaded the GTEx version 6.0 RNA-seq and genotype data

(phs000424.v6.p1, 2015-10-05 released) from database of Genotypes and

Phenotypes (dbGaP; approved protocol 9112). GTEx release version 6.0

sampled 551 donors with phenotypic information and included 9,590 RNA-

seq assays (Consortium, 2015).

RNA-Seq Normalization

We used YARN (https://bioconductor.org/packages/release/bioc/html/yarn.

html) to perform quality control, gene filtering, and normalization preprocess-

ing on the GTEx RNA-seq data, as described in (Paulson et al., 2017). Briefly,

this pipeline tested for sample sex-misidentification, merged related sub-

tissues, performed tissue-aware normalization using qsmooth (Hicks et al.,

2017), and resulted in a dataset of 9,435 gene expression profiles assaying

30,333 genes in 38 tissues from 549 individuals.

eQTL Identification

19 of the 38 tissues contained gene expression samples from at least 150

distinct individuals with imputed genetic data. We identified tissue-specific,

cis-acting eQTLs for these tissues, as described in Fagny et al. (2017). Briefly,

for each tissue, we identified SNPs that had a minor allele frequency greater

than 0.05.We then usedMatrix eQTL (Shabalin, 2012) to quantify the statistical

association of the expression of 29,155 autosomal genes with these genetic

variants based on a cis-acting window of 1 Mb, and we adjusted for sex,

age, and the three first principal components obtained using the genotyping

data.

Transcription Factor Motif Information

We downloaded Homo sapiens transcription factor motifs with direct/inferred

evidence from the Catalog of Inferred Sequence Binding Preferences (http://

cisbp.ccbr.utoronto.ca/, accessed July 7, 2015). For each transcription factor,

we selected the motif with the highest information content, and wemapped its

position weight matrix to the human genome (hg19) using the Find Individual

Motif Occurrences program (Grant et al., 2011). We retained significant

hits (p < 10�5) that occurred within the promoter ([�750, +250] around the

transcriptional start site) of Ensembl genes (GRCh37.p13; annotations from

https://genome.ucsc.edu/cgi-bin/hgTables, accessed September 3, 2015).

We intersected this map with the expression data, resulting in a set of canon-

ical regulatory interactions from 644 transcription factors to 30,243 genes,

which we used to construct our regulatory network models.

Prior Protein-Protein Interaction Data

A protein-protein interaction network between transcription factors in our motif

prior was constructed based on interaction scores fromStringDb version (v.)10

(https://string-db.org, accessed October 27, 2015).

PANDA

We used PANDA (Glass et al., 2013) to combine information from gene expres-

sion, protein-protein interaction, and transcription factor regulatory data and

to estimate gene regulatory networks in each of the 38 GTEx tissues. PANDA
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returns a complete, bipartite network with edge weights similar to Z scores. To

avoid issues related to calculating centrality measures on graphs with negative

edge weights, we created a transformed version of these Z scores:

W
ðtÞ
ij = ln

�
ew

ðtÞ
ij + 1

�
; (Equation 1)

where w
ðtÞ
ij is the edge weight calculated by PANDA between a transcription

factor (i) and gene (j) in a particular tissue (t).

Tissue-Specific Edges

To identify tissue-specific network edges, we compared the weight of an edge

between a transcription factor (i) and a gene (j) in a particular tissue (t) to the

median and interquartile range (IQR) of its weight across all 38 tissues:

s
ðtÞ
ij =

�
w

ðtÞ
ij �med

�
w

ðallÞ
ij

��.
IQR

�
w

ðallÞ
ij

�
: (Equation 2)

We defined an edge with a specificity score s
ðtÞ
ij > 2 as specific to tissue t and

the multiplicity of an edge as:

mij =
X
t

h
s
ðtÞ
ij > 2

i
: (Equation 3)

Tissue-Specific Nodes

To identify tissue-specific network nodes, we compared the median expres-

sion level ðeðtÞj Þ of a gene (j) in a particular tissue (t) to the median and IQR of

its expression across all samples:

s
ðtÞ
j =

�
med

�
e
ðtÞ
j

�
�med

�
e
ðallÞ
j

��.
IQR

�
e
ðallÞ
j

�
: (Equation 4)

We defined a gene with a specificity score s
ðtÞ
j > 2 as specific to tissue t and the

multiplicity of a gene as:

mj =
X
t

h
s
ðtÞ
j > 2

i
: (Equation 5)

Gene Set Enrichment Analysis

We quantified each transcription factor’s (i) targeting profile in a given tissue (t)

as s
ðtÞ
i: (see Equation 2), and we ran a pre-ranked gene set enrichment analysis

(Subramanian et al., 2005) on this profile to test for enrichment in GO terms.We

selected highly significant, positively enriched associations (FDR < 1 3 10�3

and ES> 0.65) from these analyses, andwe used a community structure detec-

tion algorithm (Clauset et al., 2004) to cluster thesedata and identify 48commu-

nities or sets of GO terms associated with transcription factor-tissue pairs.

Network Centralities

We used the igraph v.1.0.0 package in R to calculate the degree (using the

graph.strength() function) and betweenness centrality (using the between-

ness() function) of genes in the 38 complete, weighted PANDA tissue networks

(based on transformed edge weights, see Equation 1). For the betweenness

centrality, we used 1=W
ðtÞ
ij as the cost and treated edges as undirected.

DATA AND SOFTWARE AVAILABILITY

Data and code to reconstruct the networks can be found at https://sites.

google.com/a/channing.harvard.edu/kimberlyglass/tools/gtex-networks. The

reconstructed networks are also available on Zenodo https://zenodo.org/

record/838734 (Sonawane et al., 2017).
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