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SUMMARY
Sex differences manifest in many diseases and may drive sex-specific therapeutic responses. To understand
the molecular basis of sex differences, we evaluated sex-biased gene regulation by constructing sample-spe-
cific gene regulatory networks in 29 human healthy tissues using 8,279whole-genomeexpression profiles from
the Genotype-Tissue Expression (GTEx) project. We find sex-biased regulatory network structures in each tis-
sue. Even thoughmost transcription factors (TFs) are not differentially expressed between males and females,
manyhave sex-biased regulatory targeting patterns. In each tissue, genes that are differentially targeted byTFs
between the sexes are enriched for tissue-related functions and diseases. In brain tissue, for example, genes
associated with Parkinson’s disease and Alzheimer’s disease are targeted by different sets of TFs in each sex.
Our systems-based analysis identifies a repertoire of TFs that play important roles in sex-specific architecture
of gene regulatory networks, and it underlines sex-specific regulatory processes in both health and disease.
INTRODUCTION

Human development, physiology, and disease manifest differ-

ently in males and females. Sex differences are prevalent in

many human diseases, including cancers, diabetes, neurological

disorders, cardiovascular, and autoimmune diseases (Cloc-

chiatti et al., 2016; Morrow, 2015; Ober et al., 2008). Differences

between the sexes in incidence, prevalence, severity, and

response to treatment can complicate our understanding of

and hinder our ability to prevent, treat, and cure diseases. Bio-

logical factors and mechanisms that drive sex differences are

understudied and poorly understood.

Sex divergence in health and disease is partially driven by the

inherent inequality of the sex chromosomes, such as the effects

of the expression of Y chromosome genes, differences in dosage

of X chromosome genes, and epigenetic effects (Arnold, 2017).

The influence of the sex hormones is also a contributor. Limited

sex differences are revealed when focusing on individual gene

expression levels. Previous studies have found sex-biased differ-

ences in gene expression in sex chromosome genes and in auto-

somal genes, yet the fold changes are generally small for auto-

somes (Gershoni and Pietrokovski, 2017; InanlooRahatloo et al.,
This is an open access article under the CC BY-N
2017; Mayne et al., 2016). However, small expression changes

may be associated with large phenotypic effects, and other

genome-wide analyses have demonstrated significant sex differ-

ences in chromatin accessibility (Kukurba et al., 2016; Sugathan

and Waxman, 2013), indicating that a combination of sex-biased

factors may be reflected in variation in the regulatory networks

that control gene expression and gene regulation in each sex.

Gene regulatory network modeling synthesizes the complex

interactions between transcription factors (TFs) and their target

genes into a unified framework. A phenotype can be defined

by a characteristic network, whereas changes in network struc-

ture between groups can provide insight into phenotypic drivers.

Our previous work in analyzing gene regulatory networks in

chronic obstructive pulmonary disease (Glass et al., 2014) and

in colon cancer (Lopes-Ramos et al., 2018) found significant

sex differences in regulatory features, including those involving

genes not encoded on the sex chromosomes, and provided

insight into the underlying biological processes active in males

and females, but not found by standard differential expression

analyses. Therefore, we used a systems-based approach to

integrate multi-omics data with the goal of gaining insight into

the molecular basis of sex differences across human tissues.
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Figure 1. Study Overview

Schematic overview of our study. See also Table S1.

Article
ll

OPEN ACCESS
Figure 1 provides an overview of our study. To study sex bias

in regulatory processes, we performed differential expression

analysis followed by gene regulatory network analysis using a

large dataset collected for the Genotype-Tissue Expression

(GTEx) project (Battle et al., 2017). We used two network

modeling methods, PANDA (Glass et al., 2013) and LIONESS

(Kuijjer et al., 2019), to infer sample-specific gene regulatory net-

works in each of the 8,279 samples collected from 29 healthy hu-

man tissue types (28 solid tissues and whole blood). Generating

sample-specific gene regulatory networks through LIONESS is a

substantial advance, enabling the use of statistical methods to

compare network properties between phenotypic groups and

correcting for covariates.

We compared the networks between males and females in

each tissue and found significant sex differences in gene regu-

latory networks across all tissues. Most importantly, many TFs

have sex-biased and tissue-biased targeting patterns of genes

associated with the tissue’s function and diseases. Our results

provide a repertoire of sex-biased regulatory processes and

their regulatory drivers. Furthermore, they underline the impor-

tance of considering systems-level differences in gene regula-

tion to understand sex differences contributing to health and

disease.

RESULTS

Gene Expression Data Pre-processing
Wepreprocessed and normalized gene expression data from the

GTEx project (version 6.0) in a tissue-awaremanner using YARN,

a software pipeline designed to perform quality control, gene
2 Cell Reports 31, 107795, June 23, 2020
filtering, and normalization, allowing gene expression levels to

be comparable between tissues while preserving information

regarding tissue-specific expression (Paulson et al., 2017). The

data included expression information for 30,243 genes, including

1,074 encoded on the sex chromosomes. For the analyses

shown here, we only considered tissues with samples collected

from both men and women with more than 30 samples in either

of the sexes. This included 8,279 samples representing 29 tissue

types from 548 research subjects (360 males and 188 females).

Table S1 shows the demographic information, including a com-

parison of covariates by sex (age, race, body mass index [BMI],

RNA integrity number [RIN], and RNA isolation kit).

Sex Differences in Gene Expression
We used voom (Law et al., 2014) to identify genes that were

differentially expressed between males and females for each tis-

sue.We defined differential expression using a cutoff of false dis-

covery rate (FDR) < 0.05 and absolute fold change R 1.5. We

also evaluated a transcriptomic signal-to-noise ratio (tSNR) as

ameasure of the overall distance betweenmale and female tran-

scriptomes. For the tSNR, the signal was defined as the

Euclidean distance of average gene expression profiles between

males and females, and the noise was defined as the overall vari-

ation among individuals. Although the voom differential expres-

sion analysis allowed us to identify specific genes with sex differ-

ences in their expression, the tSNR measures the overall

divergence of transcriptomes between males and females and

has the advantage of not depending on a particular threshold.

We included autosomal and sex chromosome genes in all an-

alyses, unless noted otherwise. An overview of the differential

gene expression by sex is shown by tissue in Figure 2A, and

the complete list of differentially expressed genes is shown in Ta-

ble S2. Breast, adipose (subcutaneous), thyroid, skeletal muscle,

and skin had the largest number of differentially expressed

genes by sex, whereas the gastrointestinal tract had the least,

except for esophagus (mucosa). In breast, 4,181 genes were

differentially expressed (4,009 were autosomal) by sex, followed

by adipose (subcutaneous) with 482 genes (431 autosomal). In

contrast, all other tissues had amuch smaller number of differen-

tially expressed genes. The median number of differentially ex-

pressed genes by sex across all tissues was 64 (28 autosomal),

which represents 0.2% of analyzed genes (0.1% of autosomal

genes).

We found no correlation between sample sizes and number of

differentially expressed genes detected across tissues (Pear-

son’s r =�0.038, p = 0.85). As expected, the number of differen-

tially expressed genes depended on the threshold applied (Table

S2). We found that the number of differentially expressed genes

and the tSNR values shown in Figure 2A are highly correlated

across tissues (Pearson’s r = 0.94, p = 4 3 10�14). Most tissues

had tSNRs significantly higher than expected by chance (p <

0.05, permutation test); exceptions included the intestine termi-

nal ileum, stomach, whole blood, and colon (transverse) (Table

S3). However, the tSNR mean differences were small, and

when we repeated the analysis excluding sex chromosome

genes, the tSNRs in most tissues were not statistically signifi-

cant, suggesting minimal gene expression differences between

the sexes.



Figure 2. Sex Bias in Gene Expression

(A) Number of differentially expressed genes (DEGs) (absolute fold changeR 1.5 and FDR < 0.05), and male versus female tSNR across 29 tissues. The red line

represents the tSNR value expected in the case of no male versus female differences. Error bars represent the standard deviation (SD) of tSNR values across

10,000 random samplings of 30 males and 30 females.

(B) Number of DEGs and number of tissues that share DEGs. Figure inset: same as the main figure, but the minimum number of shared tissues shown is 4.

(C) Top 20 female-biased DEGs based on the average log-fold-change expression values across all tissues. The bar plot shows the average ± SD.

(D) Enriched GO terms in males (blue) and females (red). The three heatmaps show the 10 GO terms with the highest average normalized enrichment score (NES)

across all tissues (consistent male enrichment), lowest average NES across all tissues (consistent female enrichment), and highest SD across all tissues (most

variable sex enrichment across tissues).

See also Tables S2 and S3.
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Most differentially expressed autosomal genes were found in

only one or two tissues (Figure 2B). In contrast, differentially ex-

pressed genes shared by many tissues were enriched for sex

chromosome genes. Figure 2C shows the top 20 genes overex-

pressed in females compared with males based on the average

log fold change across all tissues. As expected, most of these

genes are encoded on the X chromosome. Similarly, the top

genes overexpressed in males compared with females are on

the Y chromosome.We performed a pre-ranked gene set enrich-

ment analysis (GSEA) (Subramanian et al., 2005) based on

voom’s weighted t statistic to identify sex-biased enrichment

of Gene Ontology (GO) terms in each tissue. We found male-

and female-biased genes are annotated to different biological

processes, for example, methylation and the immune system

(Figure 2D).

To assess whether the differences in gene expression might

be reflecting differences in the mixtures of cell types in the bulk

sample used for RNA sequencing (RNA-seq), we compared

the expression of 10 cell-type marker genes between males

and females, as reported previously (Kim-Hellmuth et al.,

2019): FASN (adipocytes); CDH1 and CLDN7 (epithelial cells);
AFP (hepatocytes); KRT10 (keratinocytes); MYH7, TNNI1, and

MYOG (myocytes); GAD1 (neurons); and STX3 (neutrophils).

The cell-type marker genes were not differentially expressed

by sex in the tissues, except for breast. In breast, the epithelial

cells gene markers (CDH1 and CLDN7) demonstrated higher

expression in tissue from males, whereas the adipocytes gene

marker (FASN) demonstrated higher expression in tissue from

females (FDR < 0.05 and fold change R 1.5).

Sex Differences in Gene Regulatory Networks
One mechanism for sex differences in gene expression is

through gene regulation by sex hormone receptors. Thus, we

evaluated whether differentially expressed genes by sex were

enriched for motifs of estrogen receptor 1 (ESR1), estrogen re-

ceptor 2 (ESR2), or androgen receptor (AR). We found that differ-

entially expressed genes were not significantly enriched for

these sex hormone receptor motifs, suggesting that these re-

ceptors are not the sole regulators of the sex differences we

observed (Table S4). Therefore, we used gene regulatory

network analysis to gain additional insight into sex-specific

gene regulatory processes.
Cell Reports 31, 107795, June 23, 2020 3
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We used PANDA and LIONESS (Glass et al., 2013; Kuijjer

et al., 2019) to infer gene regulatory network models for each

sample in each tissue and compared those network models in

samples from males and females (Figure 1). We first used

PANDA to estimate population-based networks by integrating

TF binding motifs (CIS-BP) (Weirauch et al., 2014), gene expres-

sion profiles (GTEx), and protein-protein interactions (StringDB)

(Szklarczyk et al., 2015). The algorithm uses message passing

to integrate a prior network (obtained by mapping TF motifs to

the genome) with protein-protein interaction and gene expres-

sion data and to optimize the structure of the network given

the data. PANDA produced a directed network of TFs to their

target genes, comprising 644 TFs and 30,243 target genes.

LIONESS estimates networks for each sample in a population

by serially leaving each sample out, calculating a network with

and without that sample, and using linear interpolation to esti-

mate the network for the left-out sample. We used LIONESS to

estimate individual gene regulatory networks for each sample

in the population. This approach produced 8,279 networks,

one for each RNA-seq transcriptome from the 548 GTEx

research subjects.

Each of the 8,279 estimated network models is structured as a

bipartite graph, with regulatory edges connecting TF and gene

nodes and edge weights representing the likelihood of the regu-

latory interaction between a TF and its target genes. We can use

thesemodels to test whether regulatory edges differ significantly

between males and females, to identify the differentially regu-

lated genes, and to determine the TFs driving these regulatory

differences.

We performed a broad comparison of the male and female net-

works. We used linear regression models (limma; Ritchie et al.,

2015) to compare the weight of each edge betweenmales and fe-

males in each tissue and identified the significantly different edge

weights (FDR< 0.05). A higher edgeweight indicates a higher like-

lihood of a regulatory interaction between the TF and its target

gene. We use the term higher targeting interchangeably with

higher edgeweight. For all analyzed tissues, wewere able to iden-

tify gene regulatory network edges whose weights differ signifi-

cantly between males and females (Table S5). Breast, thyroid,

and brain (basal ganglia) had the largest number of sex-biased

edges; approximately 7 million, 2 million, and 1million edges (cor-

responding to 36%, 10%, and 5% of total edges) were signifi-

cantly different between the sexes (FDR < 0.05), respectively.

Across all tissues, the median number of significant sex-biased

edges was 68,293 (0.35% of total edges in the network). There

was no significant correlation between sample sizes and number

of significant sex-biased edges found across tissues (Pearson’s

r = 0.05, p = 0.83). Most significant sex-biased edges were found

in only one tissue, whereas the sex-biased edges shared across

most tissues targeted sex chromosome genes (Figure S1). The

complete list of sex-biased edges and the tissues in which they

were found to be statistically significant is shown in Data S1.

Next, we evaluated the distribution of sex-biased edges

around genes (Figure 3A). Each gene is connected to 644 TFs,

because the generated networks are complete graphs. Genes

with more than 5% of their edges with significantly different

weights between males and females (FDR < 0.05) were defined

as differentially targeted genes (Table S6). We recognize three
4 Cell Reports 31, 107795, June 23, 2020
classes of differentially targeted genes: (1) male-biased genes

(the proportion of sex-biased edges in the male direction is

greater than 0.6), (2) female-biased genes (the proportion of

sex-biased edges in the female direction is greater than 0.6),

and (3) sex-divergent genes (the proportion of sex-biased edges

in the male- and female-biased directions is between 0.4 and

0.6). Quantifying the direction of sex-biased edges allowed us

to identify genes that have a similar number of male- and fe-

male-biased edges, which represent genes that are differentially

targeted in both males and females but by a different set of TFs

(named sex-divergent genes). As expected, breast had the

largest number of differentially targeted genes (25,994). Howev-

er, all other tissues showed a large number of differentially tar-

geted genes, varying from 87 to 14,361 genes, with a median

of 169 genes (0.6% of analyzed genes). Overall, breast, thyroid,

and brain (basal ganglia) had the largest number of differentially

targeted genes, and the gastrointestinal tract had the least,

except for esophagus (Table S6). There were no significant cor-

relation between sample sizes and number of differentially tar-

geted genes found across tissues (Pearson’s r = 0.12, p = 0.56).

Figure 3B shows that the number and patterns of differentially

targeted genes are tissue specific. Although some tissues have a

balanced number of differentially targeted genes across the

three classes, some tissues are enriched for specific classes.

Brain (other) andwhole blood are the tissues with the largest pro-

portion of differentially targeted genes in the sex-divergent class

(Table S6). The sex-divergent class, represented by genes tar-

geted in both males and females but by a different set of TFs,

is particularly interesting for understanding sex differences in

health and disease and for therapeutics development.

On average, across the 29 tissues, 87%of the differentially ex-

pressed genes were also identified as differentially targeted (p <

0.05, Fisher’s exact test). However, we found that on average,

70% of the differentially targeted genes were not differentially

expressed (Table S6). These results suggest that limited sex dif-

ferences can be found when considering only the mRNA expres-

sion levels, whereas more pronounced sex differences can be

found when analyzing transcriptional regulation.

Sex-Biased Targeting of X Chromosome Genes
Across all tissues, the median number of differentially targeted

genes on the X chromosome was 36 (minimum of 21 genes and

maximum of 913 genes) of the 1,018 analyzed genes. X chromo-

some inactivation (XCI) silences one of the two X chromosomes

in females, compensating for transcriptional dosages between

the sexes. However, XCI is incomplete and some genes are ex-

pressed from both alleles. We evaluated whether differentially tar-

geted genes are enriched in specific XCI categories, previously

defined as escape (n = 82), variable escape (n = 89), inactive (n =

388), or unknown (n=459) (Tukiainenetal., 2017).Differentially tar-

getedgenes are enriched in escapegenes comparedwith variable

escape, inactive, andunknowngenesandwithautosomes.Across

all tissues, a median of 33% of the X chromosome escape genes

aredifferentially targetedcomparedwith0.3%ofautosomalgenes

(two-sided paired Wilcoxon rank-sum test, p = 3.73 3 10�9, Fig-

ure S2A). The direction of sex bias depends on the region in which

the escape genes are located. A median of 17% of the escape

genes that are not in the pseudoautosomal regions (PARs) are



Figure 3. Sex-Biased Targeting in Gene Regulatory Networks

(A) Schematic representation of the three classes of differentially targeted (DT) genes: male biased, sex divergent, and female biased.

(B) Scatterplots of all genes (n = 30,243), indicating the number of female-biased edges (x axis) and the number of male-biased edges (y axis) at FDR < 0.05.

Genes with more than 5% of their edges significantly different between males and females (FDR < 0.05) were defined as DT; the number of DT genes in each

tissue is noted underneath the tissue name. Blue points represent DTmale-biased genes (the proportion of sex-biased edges in the male direction is greater than

0.6), yellow points represent DT sex-divergent genes (the proportion of sex-biased edges in the male- and female-biased directions is between 0.4 and 0.6), red

points represent DT female-biased genes (the proportion of sex-biased edges in the female direction is greater than 0.6), and black points represent non-DT

genes (less than 5% of the edges are sex biased).

See also Tables S5 and S6 and Data S1.
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female biased, and 7% aremale biased (p = 0.006, Figure S2B). In

contrast, a median of 13% of the escape genes in PARs are male

biased, and 7%are femalebiased (p= 0.048, FigureS2C). Consis-

tent with previous findings of expression differences (Tukiainen

et al., 2017), our results show that male-female targeting differ-

ences reflect incomplete XCI, with enrichment of differentially tar-

getedgenes inescapegenescomparedwithother X chromosome

genes and autosomes (Figure S2D).
An Example of Differential Targeting by the TF MAZ
We found sex-biased regulatory network structures across

many tissues, as illustrated by a high number of genes that

are differentially targeted between males and females. To char-

acterize how TFs might drive these regulatory sex differences,

we evaluated how TF targeting patterns correlate with the

expression of their target genes and associate with biological

pathways.
Cell Reports 31, 107795, June 23, 2020 5
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We began by selecting a single TF to investigate. To choose

that example TF, we performed a TF motif enrichment analysis

(Fisher’s exact test) on the genes differentially targeted between

males and females in all tissues. Motifs for sex hormone recep-

tors were not the most significantly enriched. Instead, the motif

for MAZ, MYC-associated zinc finger protein, was significantly

enriched across many tissues (Table S7). MAZ, which encodes

a zinc finger TF, is ubiquitously expressed and has 13,270 target

genes (genes with the TF binding motif in the promoter region).

Thus, MAZ is involved in many cellular processes, including uro-

genital (Haller et al., 2018), neuronal (Goldie et al., 2017), and tu-

mor development (Cogoi et al., 2013; Luo et al., 2016; Yu et al.,

2017).

We investigated the regulatory role of MAZ in brain (basal

ganglia), because this tissue had the third-largest number of

sex-biased network edges, even though it had relatively few

differentially expressed genes. To evaluate the regulatory poten-

tial of MAZ on its target genes, we started by choosing the auto-

somal target gene with the highest differential expression in fe-

male (PRSS30P) and the one in male (FRG1B). PRSS30P has

higher average expression and higher average targeting (i.e.,

higher average edge weight) by MAZ in females (Figure 4A). In

contrast, FRG1B has higher average expression and higher

average targeting by MAZ in males (Figure 4B). We investigated

the correlation between targeting and expression of PRSS30P

and FRG1B across all samples. For both genes, we observed

that the weight of the edge from MAZ was linearly correlated

with the gene’s expression (R2 = 0.77 for PRSS30P and R2 =

0.52 for FRG1B, Figure 4C). MAZ was not differentially ex-

pressed between males and females, and its expression was

not correlated with the expression of either PRSS30P or

FRG1B (R2 = 0, Figure 4D).

We extended this analysis to include all 13,270 target genes of

MAZ. We found that differential targeting by MAZ is positively

correlated with the differential expression of its target genes

(R2 = 0.36, Figure 4E). This relationship is also true when

excluding sex chromosome genes (R2 = 0.36, Figure 4F). Genes

with no sex-biased differential expression can be differentially

targeted by MAZ. For example, CASP2, involved with synaptic

dysfunction and neuronal death in Huntington’s disease and Alz-

heimer’s disease (Hermel et al., 2004; Pozueta et al., 2013; Troy

et al., 2000), is not differentially expressed but does have signif-

icantly higher targeting by MAZ in females (FDR = 0.025, Fig-

ure 4F). Similarly, CUEDC2 is not differentially expressed but

has significantly higher targeting in males (FDR = 0.038).

CUEDC2 has been shown to modulate ESR1 protein levels

regardless of the presence of 17b-estradiol (Pan et al., 2011).

To determine whether these observations were specific to

brain (basal ganglia), we repeated this analysis in each of the

other tissues. We found that the correlation between MAZ’s tar-

geting patterns and its targets’ expression levels varies across

tissues (Figure 5A). In pituitary and colon (transverse), for

example, differential targeting byMAZ largely explains the differ-

ential expression of its target genes (R2 = 0.88 and 0.53, respec-

tively) (Figures 5B and 5C). However, in adipose (subcutaneous),

there was no relationship between targeting and expression

(R2 = 0) (Figure 5D). Although highly expressed across the tis-

sues, MAZ is not differentially expressed by sex in the tissues.
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Thus, these network analyses reveal a sex-biased regulatory po-

tential of TFs that is independent of both their mRNA expression

level differences and the differential expression of their target

genes.

TF Differential Targeting Patterns across 29 Tissues
We repeated our differential targeting analysis for all TFs and

across all tissues, providing a holistic view of the landscape of

TFs potentially driving sex differences. To visualize the results,

we ranked all 644 TFs in our network models based on the cor-

relation between the TF differential targeting and the differential

expression of its target genes (R2) (Figure 6; Table S8). We found

many TFs with targeting patterns that are well correlated with the

differential expression of their target genes and many without

correlation between differential targeting and expression. These

patterns are ubiquitous across the tissues, but the specific TFs

and the number of TFs involved vary by tissue.

Sex hormone receptors play an important role in sex differen-

tial regulation of genes (van Nas et al., 2009). We found that

although sex hormone receptors were often not the highest-

ranked differentially targeting TFs, ESR1, ESR2, and AR exhibit

sex-biased regulatory patterns. Similar to MAZ, these sex hor-

mone receptors were not differentially expressed betweenmales

and females, but they exhibit strong differential targeting pat-

terns in several tissues, including breast (Figures S3–S5), heart

(left ventricle), and whole blood (Figure S6). Overall, these results

suggest that various TFs, including many that are not sex hor-

mone receptors, drive the sex-biased regulatory programs

active in different tissues.

Differential Regulation of Biological Processes
Finally, we sought to characterize how sex bias in targeting pat-

terns may influence the regulation of biological processes. By

doing this, we hoped to gain insights into how gene regulation,

manifested as differential targeting of genes between the sexes,

might drive sex differences and influence human health and

disease.

To systematically characterize the biological functions associ-

ated with differential targeting by TFs in each tissue, we ran pre-

ranked GSEA to identify the GO terms and Kyoto Encyclopedia

of Genes and Genomes (KEGG) pathways enriched for genes

differentially targeted between males and females. We per-

formed one enrichment analysis for each TF with expression-tar-

geting correlation greater than 0.3 in a given tissue; genes were

ranked based on their level of differential targeting (t statistics

from limma) by the corresponding TF in the tissue.

Again, we used brain (basal ganglia) as an example. Figure 7A

shows the 20 GO terms and 20 KEGG pathways with the highest

variability in their GSEA normalized enrichment score across

differentially targeting TFs. We found sex-biased enrichment

patterns for several brain-related biological processes, including

the GO terms regulation of synapse structure or activity and

neurotransmitter transport. In addition, several brain-related dis-

eases showed sex-biased enrichment, such as Alzheimer’s dis-

ease and Parkinson’s disease. These diseases are known to

have sex differences in incidence and severity that are higher

in women for Alzheimer’s disease and higher in men for Parkin-

son’s disease (Mielke et al., 2014; Pringsheim et al., 2014).
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Figure 4. Differential Targeting by the TF MAZ in Brain (Basal Ganglia)

(A) Expression levels of PRSS30P (left) and MAZ to PRSS30P edge weights (right) across male and female brain (basal ganglia) samples.

(B) Expression levels of FRG1B (left) and MAZ to FRG1B edge weights (right) across male and female brain (basal ganglia) samples.

(C) Plots showing the expression of the target gene versus the MAZ to target gene edge weight.

(D) Plots showing the expression of the target gene versusMAZ gene expression. In (C) and (D), each data point represents a single sample in brain (basal ganglia).

(E) Scatterplot of MAZ target genes showing the genes’ differential expression levels (t statistics) by the genes’ differential edge weight targeting levels by MAZ (t

statistics). Mismapping of sequencing reads to the sex chromosomes may result in spurious expression of Y chromosome genes in females.

(F) Same as (E), but without sex chromosome genes.

M, male; F, female. See also Figures S3–S5.
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In Figure 7B, we present the 20most significant TFs (based on

the GSEA FDR value) that differentially target genes annotated to

Alzheimer’s disease and Parkinson’s disease. Although the

genes annotated to these diseases only partially overlap (Jac-

card index of 0.46), most TFs found to be significantly different

in their targeting patterns (FDR < 0.05) were the same in both dis-

eases (100 of the 114 unique significant TFs, Jaccard index of

0.88). This could indicate that TFs play important roles in sex-

biased regulation in the normal and diseased brain. For example,

consistent with the b-amyloid plaques being the major patholog-

ical lesions in Alzheimer’s disease brain, MAZ (male biased) has

been shown to colocalize with these plaque structures (Jordan-

Sciutto et al., 2000), and STAT2 (female biased) is known to

participate in the SGK1-STAT1/STAT2 pathway to protect

against b-amyloid-induced apoptosis (Hsu et al., 2009).

When we repeated this analysis for other tissues, we found

similar patterns of sex-biased regulation of biological processes

(Figure S7). Many GO terms and KEGG pathways were enriched

for genes targeted by different sets of TFs in each sex. These

included cellular defense response, regulation of leukocyte-

mediated immunity, and primary immunodeficiency in whole
blood. In heart (atrial appendage), not only were biological pro-

cesses important for the tissue function enriched (such as heart

process and cardiac cell development), but we also found sex-

biased targeting of dilated cardiomyopathy. We further found

that differentially targeted genes were enriched for autoimmune

diseases known to have pronounced sex differences: maturity-

onset diabetes of the young in pancreas and autoimmune thyroid

disease in thyroid. Overall, despite limited differential expres-

sion, TFs have sex-biased targeting patterns that are consistent

with known differences in disease and tissue function.

DISCUSSION

Sex differences have been recognized among the most signifi-

cantly understudied aspects of human disease. Historically,

sex has not been properly taken into account, many experi-

mental studies have been done only on males, the sex chromo-

somes have been excluded from analyses, and sequence map-

ping protocols have not account for sex chromosome biases

(Khramtsova et al., 2019). The 2015 guidelines from the National

Institutes of Health (NOT-OD-15-102) stated that sex should be
Cell Reports 31, 107795, June 23, 2020 7
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Figure 5. Expression Levels and Expression-Targeting Correlation of MAZ across 29 Tissues

(A) Expression levels (average ± SD, left panel) and expression-targeting correlation values (R2, right panel) across 29 tissues for MAZ. Green bars represent the

correlation considering all target genes, and red dots represent the correlation considering only autosomal target genes.

(B–D) Three example tissues that have different levels of MAZ expression-targeting correlation: (B) pituitary, (C) colon (transverse), and (D) adipose

(subcutaneous). MAZ, a highly expressed TF with no differential expression by sex, exhibits tissue-dependent expression-targeting correlation.

See also Figure S6.
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considered in research designs, analyses, and reporting in verte-

brate animal and human studies. However, there are many chal-

lenges in studying sex as a biological variable. This includes

ensuring adequate sample sizes for well-powered analyses of

each sex and issues with sequencing data mapping, including

poor mapping quality and bias from both highly similar regions

between the sex chromosomes and the lack on Y chromosome

in females.

Several studies have found sex differences in the expression

levels of autosomal genes, although the expression differences

are generally small. The differentially expressed genes between

males and females are enriched for biological processes with

known sex differences, such as reproduction, fat biogenesis,

muscle contraction, and cardiomyopathy (Gershoni and Pietro-

kovski, 2017; InanlooRahatloo et al., 2017). In an analysis of a

small GTEx pilot dataset (1,641 tissue samples from 175 individ-

uals), Melé et al. (2015) identified 135 genes with sex-biased

expression globally across the tissues (mostly on sex chromo-

somes). UsingWeighted Correlation Network Analysis (WGCNA)
8 Cell Reports 31, 107795, June 23, 2020
(Langfelder and Horvath, 2008), they identified groups of genes

with correlated expression enriched for GO terms that include

spermatid, ectoderm, and epidermis development. In interpret-

ing these results, WGCNA is a correlation-based method that

captures general patterns of coexpression but does not distin-

guish between TFs and their targets and thus does not identify

sex-biased regulatory processes. In contrast, our analysis is

based on PANDA (Glass et al., 2013) and LIONESS (Kuijjer

et al., 2019), which explicitly model gene regulation by TFs and

allow relevant regulatory differences to be identified.

We analyzed sex differences in gene expression and gene reg-

ulatory networks in 8,279 samples from 29 healthy tissues in the

GTEx version 6.0 cohort. Consistent with the other analyses

cited earlier, we found that the number of genes that are differen-

tially expressed between males and females is small (median of

64 genes) in most tissues, with the exception of breast. We found

that in general, differentially expressed genes between the sexes

are enriched for methylation processes (based on pathway

enrichment analysis). These results suggest that gene regulatory



Figure 6. TF Differential Targeting Patterns across 29 Tissues

Expression-targeting correlation value (including both autosomal and sex chromosome genes) for each TF (green ticks) in each tissue. Tissues are ordered based

on the ESR1 expression-targeting correlation value. For each tissue, the names of the top 3 TFs with the highest expression-targeting correlation values are

annotated, and the locations of ESR1, ESR2, AR, and MAZ are marked by arrows. See also Table S8.
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processes, such as epigenetic variability, may be drivers of sex

differences in human health and, by extension, human diseases.

Using gene regulatory network analysis, we observed that

male and female networks have significant differences in their

regulatory structure, meaning that genes in males and females

are often regulated by different TFs, or combinations of TFs,

whether those target genes are differentially expressed or not.

Finding sex-differential targeting of genes in the absence of

strong differential expression (considering a 1.5-fold-change

cutoff) can reveal latent sex differences in gene regulation, which

might become important under diverse conditions of age, stress,

disease development, and therapeutic response. For example,

our recent study evaluating the regulatory networks of colon tu-

mor samples before chemotherapy revealed that male and fe-

male patients are primed to respond differently to therapy even

though they had not yet been challenged (Lopes-Ramos et al.,

2018). We found strong sex-biased regulation of genes associ-

ated with drug metabolism, despite no differential expression,

and determined that higher targeting of the drug metabolism

pathway was associated with a higher survival outcome for

women treated with chemotherapy. Genes that are not differen-

tially expressed can be targeted in both sexes but through

different sets of TFs. Thus, identifying sex-biased molecular

regulation is crucial, and modulating sex-divergent genes may

require sex-aware drug development and treatment protocols.

Finding regulatory drivers in the absence of strong differential

expression is another important advantage of network analysis.

Previous studies comparing phenotypic groups have found that

commonly expressed regulators can target different genes and

play specific regulatory roles despite little or no difference in

expression level (Glass et al., 2014, 2015; Lopes-Ramos et al.,
2017; Neph et al., 2012; Sonawane et al., 2017). Several mech-

anisms canmediate differential targeting by TFs, such as TF pro-

tein abundance and conformation, establishment of TF interac-

tions and cooperativity, and epigenetic modifications that

interfere with TF binding (Lambert et al., 2018; Yin et al., 2017).

Gonadal hormones play a strong role in sex differences in gene

expression (van Nas et al., 2009). Our network models captured

the differential targeting pattern of the sex hormone receptors

(ESR1, ESR2, and AR) even though the TFswere not differentially

expressed. Differential edge weights between sex hormone re-

ceptors and their target genes across individuals could be attrib-

uted to the differential levels of the ligands, such as estrogens

and progesterone, influencing the receptor activity. We found

that the sex hormone receptors were not the sole TFs mediating

the sex-biased regulatory processes. Instead, various TFs

mediate the sex-biased regulatory program in each tissue, with

the number and the specific TFs varying among tissues. In

each tissue, differences in gene regulation between the sexes

were often associatedwith the tissue’s function and the diseases

that affect the tissue. For example, we found that many TFs with

sex-biased differential targeting regulate genes associated with

diseases with recognized sex-biased manifestations, such as

Alzheimer’s disease, Parkinson’s disease, diabetes, autoim-

mune thyroid disease, and cardiomyopathy. These findings

reveal latent sex differences in gene regulation, which might be

important drivers of sex-biased manifestations during disease

development and progression.

In our study, we note several limitations, including the mis-

mapping of sequencing reads to the sex chromosomes in the

GTEx data and our inclusion of the sex chromosome genes to

estimate our networks. For biological coherence and to account
Cell Reports 31, 107795, June 23, 2020 9
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Figure 7. Sex-Biased Targeting of Biological Processes in Brain (Basal Ganglia)

(A) Top 20 GO terms and 20 KEGG pathways enriched for genes differentially targeted by TFs with high expression-targeting correlation values (R2 > 0.3). GO

terms and KEGG pathways selected are those with the highest NES standard deviation across the TFs. Enrichment for males is shown in blue and for females is

shown in red.

(B) Top 10 male-biased (blue) and female-biased (red) TFs differentially targeting genes annotated to Parkinson’s disease, and Alzheimer’s disease. TFs were

selected based on their FDR significance.

See also Figure S7.
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for spurious correlation in females, we set the edge weights to Y

chromosome genes in females to the minimum value found,

which can cause significant inflation of male-biased Y chromo-

some edges. As network methods evolve, we need to develop

better approaches that can balance these types of technical

and biological artifacts to improve and extend comparisons of

male and female networks and to understand how these regula-

tory differences contribute to sex differences in health and

disease. Our analyses were done on the GTEx dataset, and

need to be repeated in additional datasets to confirm that our

findings are generalizable.

Our analysis identified statistically significant sex differ-

ences in regulatory processes and the regulatory relationships

between TFs and their target genes. We found that gene reg-

ulatory processes vary by sex across tissues and that many

TFs have sex-biased targeting patterns. Genes that are differ-

entially targeted between males and females are enriched for

disease and tissue-related functions. These findings are a sig-

nificant step forward in understanding how sex differences

manifest in gene regulatory networks and underscore the

importance of looking beyond gene expression.

Most importantly, we found regulatory differences between

the sexes in every tissue, indicating that sex-biased regulation

of cellular processes is systemic, rather than isolated to a small

number of tissues in which one might argue that differences in

biological function are driving differences in regulation. Males

and females often do not manifest disease in the same way, or

respond identically to treatment, and the exploration of the

causes of these differences should remain an area of active

study. More fully exploring sex-biased patterns of gene regula-

tion is crucial not only for understanding how sex-specific

biological processes drive health and disease but also for the

development of precision therapeutics that will best treat dis-

ease in an individual, accounting for sex.
10 Cell Reports 31, 107795, June 23, 2020
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demeo@channing.harvard.edu).

Materials Availability
This study did not generate new unique reagents.

Data and Code Availability
The sample-specific gene regulatory networks generated in this study are available at https://grand.networkmedicine.org/tissues.

The network algorithms PANDA (Glass et al., 2013) and LIONESS (Kuijjer et al., 2019) were used as implemented in netZooM 0.1

(https://github.com/netZoo/netZooM).

METHOD DETAILS

GTEx dataset
Wedownloaded theGenotype-Tissue Expression (GTEx) version 6.0 RNA-Seq dataset (phs000424v6.p1, 2015-10-05 released) from

dbGaP (approved protocol #9112). Using YARN in Bioconductor (https://bioconductor.org/packages/release/bioc/html/yarn.html),

we performed quality control by removing sex-misannotated samples, gene filtering, tissue-aware normalization using qsmooth

(Hicks et al., 2018), and grouped related body regions based on gene expression similarity (further details described in Paulson

et al., 2017). ‘‘Skin’’ includes samples from the lower leg (sun exposed) and from the suprapubic region (sun unexposed); brain (basal

ganglia) category includes caudate, nucleus accumbens, and putamen; brain (cerebellum) category includes cerebellar hemisphere

and cerebellum; brain (other) category includes amygdala, anterior cingulate cortex (BA24), cortex, frontal cortex (BA9), hippocam-

pus, hypothalamus, spinal cord (cervical c-1), and substantia nigra.

This YARN-filtered dataset included gene expression profiles from 9,435 samples across 38 tissues. We removed sex-specific tis-

sues (prostate, testis, uterus, vagina, and ovary), cell lines (EBV-transformed lymphocytes and transformed fibroblasts), and those

with fewer than 30 samples in either of the sexes (kidney cortex and minor salivary gland). The final dataset contained 8,279 samples

from 29 tissues (28 solid organ tissues and whole blood) and 548 research subjects (188 females and 360 males), and included

expression information for 30,243 genes (including 1,074 genes encoded on the sex chromosomes).

Network inference using PANDA and LIONESS
Sample-specific networks were reconstructed using PANDA (Glass et al., 2013) and LIONESS (Kuijjer et al., 2019) as implemented in

netZooM 0.1 (https://github.com/netZoo/netZooM). PANDA begins with a ‘‘prior’’ network consisting of TFs connected to target
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genes, which is generated by mapping TF motifs to the genome. PANDA then uses a message passing algorithm to iteratively refine

the network model by integrating gene expression and protein-protein interaction (PPI) data. The PPI and the TF/target gene prior

networks were generated as described by Sonawane et al. (2017). Briefly, TF motifs with direct and inferred evidence were down-

loaded from the Catalog of Inferred Sequence Binding Preferences (Weirauch et al., 2014). For each TF, the motif with highest infor-

mation content was selected and subsequently mapped to the human genome using FIMO (Grant et al., 2011). An edge in the TF/

target gene prior network indicates a significant TF motif match (p < 10�5) within the promoter region of Ensembl genes

(GRCh37.p13), defined as [-750, +250] around the transcription start site. To generate the PPI network, the interactions between

all TFs in the prior network were obtained and weighted based on interaction scores from StringDB v10 (Szklarczyk et al., 2015).

We applied PANDA to estimate one aggregate regulatory network including auto- and allosomes for the complete dataset, which

included 9,435 gene expression samples. We then applied LIONESS to infer individual networks for each sample in the population.

LIONESS uses an iterative process that leaves out each individual in a population, estimates the network with and without that in-

dividual, and then interpolates edgeweights to derive an estimate for the network active in that single individual.We applied LIONESS

to compare the aggregate PANDA network to PANDA networks that iteratively left out each of the 8,279 samples in the 29 tissues

retained for analysis in this study. This produced 8,279 complete, weighted gene regulatory networks that consisted of 644 TFs tar-

geting 30,243 genes (nearly 20 million edges).

In females, a non-zero weight can be found for edges to Y chromosome genes due to spurious correlation values with non-existing

Y chromosome genes in females. These correlations result from sequencing reads that mis-align to the reference genome (which

contains the Y chromosome), and sequencing reads normalization bias. Therefore, we replaced the edge weights to all Y chromo-

some genes in females to the minimum edge weight found for the Y chromosome genes across samples (to be consistent with the

non-existence of Y chromosome genes in females). This had the effect of down-weighting 36,064 edges that were connected to the

56 Y chromosome genes in the female networks. The entire collection of reconstructed networks used in this study are available on:

https://grand.networkmedicine.org/tissues. For a detailed description of the network methods and their interpretation, see Methods

S1: Network inference using PANDA and LIONESS, related to STAR Methods.

QUANTIFICATION AND STATISTICAL ANALYSIS

Differential expression analysis
Differential expression analysis was performed using voom to transformRNA-seq read counts to log counts permillion (log-cpm) with

associated precisionweights, followed by linearmodeling and empirical Bayes procedure using limma (Law et al., 2014).We used the

following linear regression model to detect sex-biased gene expression in each tissue:

Y � b0 + b1Batch+ b2Race+ b3Age+ b4BMI+ b5RIN+ b6Sex + ε

where Y is the gene expression, Batch denotes the type of RNA isolation batch (PAXgene, QIAGEN, and Trizol), Race denotes the

race of the subject (Asian, Black or African American, White, American Indian or Alaska Native, and unknown), Age denotes the

age of the subject, BMI denotes the bodymass index of the subject,RIN denotes the sample RNA integrity number, and Sex denotes

the reported sex of the subject. In brain and skin, we also accounted for multiple-samples from the same individual collected from

different tissue subregions, adding the subregion from where the sample was collected as a covariate in the regression model.

We calculated the variance inflation factor (VIF) to detect multicollinearity between covariates in themodel. All covariates have VIFs

close to 1, suggesting that these data are generally free of multicollinearity between variables. The p values for the estimated coef-

ficient of Sex were adjusted to control for the false discovery rate (FDR) from multiple testing using the Benjamini-Hochberg (BH)

method. Positive t-statistics indicate male-biased gene expression; and negative t-statistics indicate female-biased gene expres-

sion. Genes with absolute fold-change R 1.5 and FDR < 0.05 were considered differentially expressed.

We performed Gene Ontology (GO) enrichment analysis using pre-ranked Gene Set Enrichment Analysis (GSEA) (Java command

line version 2-2.2.4) (Subramanian et al., 2005), and GO term assignments available in the Molecular Signatures Database (MSigDB)

(https://www.gsea-msigdb.org/gsea/msigdb/collections.jsp#C5) (‘‘c5.all.v6.0.symbols.gmt’’). For each tissue, we performed a

GSEA on the list of genes ranked by the voom t-statistics. Figure 2D shows heatmaps indicating GO term enrichment. We selected

the GO termswith a positive Normalized Enrichment Score (NES) across all tissues, which indicatesGO enrichment inmales, thenwe

calculated the average NES, and selected the ten GO terms with the highest average NES value (first panel). We repeated this for

negative NES to select the top ten GO terms enriched in females (second panel). Note that by doing this we calculated the NES

average considering only the pathways that were found enriched in the same direction in all tissues. Finally, to plot GO terms chang-

ing the sex-enrichment direction across tissues, we selected the ten GO terms with the highest standard deviation of NES values

across the tissues (third panel).

Transcriptome-based signal-to-noise ratio
We also investigated sex bias in gene expression by calculating a transcriptome-based signal-to-noise ratio (tSNR) to quantify the

overall divergence of gene expression profiles between males and females. For the tSNR, the signal was defined as the Euclidean

distance of average gene expression profiles between groups (in this case, males and females), and the noise was defined as the

overall variation among individuals. The tSNR between females (X) and males (Y) was calculated as:
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where F andM represent the number of female and male samples, respectively. Xis a vector representing the average expression of

genes across female samples, and Y is the average expression of genes acrossmale samples. Here, xi is the expression of each gene

in sample i, yi is the expression of each gene in sample i.

Instead of calculating a single tSNR per tissue, we performed a boot-strapping analysis that allowed us to estimate a tSNR value

that is robust to sample-size and sex-imbalance. For each tissue, we randomly sampled 30 males and 30 females (F = M = 30) and

computed the corresponding tSNR.We repeated this 10,000 times and averaged across the computed tSNR values.We report these

average tSNR values in Figure 2 and Table S3. To estimate the statistical significance of these average tSNR values, we derived an

empirical p value. To do this, we performed 10,000 additional tests in which we selected 30 random samples for each group, irre-

spective of the sex labels. P values were calculated as the percentage of these tests in which the ‘‘random’’ tSNR value was greater

than the calculated average tSNR. We performed this tSNR analysis considering the expression of all genes, and then repeated

considering the expression of only autosomal genes.

Enrichment analysis for sex hormone receptor motifs
Weperformed a transcription factor (TF) motif scan bymapping TFmotifs from the Catalog of Inferred Sequence Binding Preferences

(Weirauch et al., 2014) to promoter regions within the genome (described below). The output of this scan was a set of target genes for

each of 644 TFs. To find if sex hormone receptor motifs were enriched in the promoter regions of the differentially expressed genes,

we performed a TF motif enrichment analysis for three sex hormone receptor TFs: estrogen receptor 1 (ESR1), estrogen receptor 2

(ESR2), and androgen receptor (AR). For each of these TFs, we used Fisher’s Exact Test to evaluate the overlap between a set of

differentially expressed genes in each tissue with the target genes of that TF. The p values were adjusted using the BH method.

The results are presented in Table S4.

Analysis of differential network targeting
To compare the weight of each edge between male and female networks, we used a linear regression model (limma package in

Bioconductor (Ritchie et al., 2015)) similar to the differential gene expression analysis described above, and adjusting for the

same covariates. We used the following linear regression model to detect sex-biased edges in each tissue, where Z is the edge

weight and the covariates as defined previously:

Z � b0 + b1Batch+ b2Race+ b3Age+ b4BMI+ b5RIN+ b6Sex + ε

The p values were adjusted for FDR using the BH method. Edges with FDR < 0.05 were considered sex-biased.

Each gene is connected to 644 TFs as the generated networks are complete graphs. Genes with more than 5% of their edges

significantly different between males and females (FDR < 0.05) were defined as differentially targeted genes. To identify the direction

of the differential targeting, we calculated the proportion of male-biased edges for each gene, which is the number of male-biased

edges divided by the total number of sex-biased edges. We recognized three classes of differentially targeted genes: 1) male-biased

genes (the proportion of male-biased edges is greater than 0.6); 2) female-biased genes (the proportion of male-biased edges is less

than 0.4); and 3) sex-divergent genes (the proportion of male-biased edges is between 0.4 and 0.6), in this class genes have a similar

number of male- and female-biased edges, but are targeted by a different set of TFs. These results are represented as scatterplots of

the number of female-biased edges by the number of male-biased edges (Figure 3), and listing the differentially targeted genes by

tissue (Table S6).

Transcription factors’ differential targeting
To characterize how TFs drive regulatory sex differences, we evaluated: 1) the TF motifs enriched for differentially targeted genes; 2)

the correlation between a TF’s targeting patterns and the expression of its target genes; and 3) the association of a TF’s targeting

patterns with biological processes (enrichment analysis).

We performed a TFmotif enrichment analysis to find TFmotifs enriched in the promoter regions of the differentially targeted genes.

For each TF in each tissue, we compared the number of differentially targeted genes with or without the TF motif (based on the motif

scan described above) using a Fisher’s Exact Test. The p values were adjusted using the BH method. For each TF motif, we
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calculated a combined p value across all tissues using Fisher’s method as implemented in the sumlog function in the metap R pack-

age (Dewey, 2019). The results are presented in Table S7.

We calculated the expression-targeting correlation for each TF in each tissue. For this, we selected a TF’s target genes (genes with

the TF motif in the promoter region), then we calculated the correlation between the differential expression levels of the target genes

and the differential targeting levels from the TF. More specifically, we calculated the Spearman correlation between the t-statistics of

differential expression of the target genes and the t-statistics of differential targeting of edge weights from the TF to its target genes.

We reported the coefficient of determination (R2), adjusted by the Wherry’s formula (Yin and Fan, 2001) for all target genes and for

autosomal target genes (Figure 6; Table S8). The adjusted R2 was calculated as:

R2 = 1� �
1� r2

� n� 1

n� p

where r is the Spearman correlation coefficient, n is the sample size (in this case the number of the TF target genes), p is the number of

predictor variables (2 in this case).

To systematically characterize the biological processes associated with each TF’s sex-biased targeting patterns, we ran pre-

ranked GSEA. In each tissue, we performed one enrichment analysis for each TF with expression-targeting correlation greater

than 0.3. Genes were ranked based on their level of differential targeting (t-statistics from the limma analysis) by the corresponding

TF in the tissue. Knowing that the differential targeting of the Y chromosome genes is an extreme outlier when comparing male and

female networks, and no additional biological processes would be found enriched in males when all the Y chromosome genes are

ranked at the top of the differentially targeted genes list, we removed the Y chromosome genes for this enrichment analysis.

We performed two separate analyses, one using GO annotations (as described previously), and the other one using the Kyoto

Encyclopedia of Genes and Genomes (KEGG) pathway database (Kanehisa et al., 2016) downloaded from MSigDB:

‘‘c2.cp.kegg.v6.2.symbols.gmt.’’ The results for selected tissues are shown in a heatmap in Figures 7 and S7. For these figures,

we selected the 20 GO terms and 20 KEGG pathways with the highest NES standard deviation across the evaluated TFs. As an

example, we also zoom in and show the top 20 TFs most statistically significant (based on FDR) for a biological process relevant

to the tissue.
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