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Abstract

Background: Cell lines are an indispensable tool in biomedical research and often used as surrogates for tissues.
Although there are recognized important cellular and transcriptomic differences between cell lines and tissues, a
systematic overview of the differences between the regulatory processes of a cell line and those of its tissue of
origin has not been conducted. The RNA-Seq data generated by the GTEx project is the first available data resource
in which it is possible to perform a large-scale transcriptional and regulatory network analysis comparing cell lines
with their tissues of origin.

Results: We compared 127 paired Epstein-Barr virus transformed lymphoblastoid cell lines (LCLs) and whole blood
samples, and 244 paired primary fibroblast cell lines and skin samples. While gene expression analysis confirms that
these cell lines carry the expression signatures of their primary tissues, albeit at reduced levels, network analysis
indicates that expression changes are the cumulative result of many previously unreported alterations in transcription
factor (TF) regulation. More specifically, cell cycle genes are over-expressed in cell lines compared to primary tissues,
and this alteration in expression is a result of less repressive TF targeting. We confirmed these regulatory changes for
four TFs, including SMAD5, using independent ChIP-seq data from ENCODE.

Conclusions: Our results provide novel insights into the regulatory mechanisms controlling the expression differences
between cell lines and tissues. The strong changes in TF regulation that we observe suggest that network changes, in
addition to transcriptional levels, should be considered when using cell lines as models for tissues.
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Background
Cell lines are an essential tool in cellular and molecular
biology, providing a lasting resource that can match a par-
ticular genotype and phenotype in a controllable and repro-
ducible setting. Cell lines have accelerated the investigation
of many biological processes, however despite their merits
as an experimental system, cell lines do not capture tissue
complexity and heterogeneity, mainly because they consist
of a single cell type that is adapted to grow in culture and
lacks interactions with other cell types, the extracellular
matrix, or paracrine signaling [1, 2]. Cellular heterogeneity
is present even in seemingly homogenous groups of cells
[3]. While it has been previously reported that these and

other factors can influence cell line gene expression [4–6],
the differences in transcription factor (TF) regulation be-
tween cell lines and tissues have not been systematically
studied. Regulatory network approaches can help elucidate
the regulatory processes associated with the differences in
expression observed in cell lines when compared to their
tissues of origin.
Standard transcriptomic analyses typically focus on

studying the regulation and function of one or a few
genes, and these approaches fail to characterize the com-
plex cellular processes defined by the collective contri-
bution of signaling pathways and cell-type specific
regulators. On the other hand, TF regulatory networks
provide an intuitive framework for characterizing the
combinatorial regulatory effect of TFs on their target
genes. These regulatory networks capture and quantita-
tively model the processes that drive cellular phenotype,
with differences in network structure reflecting changes
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in regulatory processes. For example, in previous work
experimentally interrogating the subnetwork around a
few TFs it has been possible to uncover patterns of tran-
scriptional regulation associated with cellular differenti-
ation [7], pluripotency [8], and development [9]. More
recently, by integrating different types of genomic data it
has been possible to model genome-wide regulatory net-
works [10] and to identify distinct regulation patterns
within different cell types [11] or different disease states
[12–14]. Many of these network algorithms rely on a
large number of expression samples and, until now,
regulatory networks have not been used to elucidate the
regulatory process differences between cell lines and
their tissues of origin mainly because of the lack of large
data sets with paired samples.
The Genotype-Tissue Expression (GTEx) project [15]

generated a large multi-subject data set that offers an un-
precedented opportunity to understand how well a cell
line’s regulatory processes recapitulate those of its tissue of
origin. GTEx version 6.0 includes RNA-Seq data for 244
paired primary fibroblast cell lines and skin samples and
127 paired Epstein-Barr virus (EBV) transformed lympho-
blastoid cell lines (LCLs) and whole blood samples. Primary
fibroblasts are a type of finite cell line widely used as model
systems because they are easily isolated and grown in cul-
ture, and almost never show genetic alterations in onco-
genes or tumor suppressors [16, 17]. LCLs are among the
most widely created, archived, and analyzed continuous cell
lines which, in contrast to finite cell lines, acquire the ability
to proliferate indefinitely. LCLs have been extensively geno-
typed and sequenced as part of large collaborative projects,
such as the International HapMap [18], 1000 Genomes
[19], ENCODE [20] and GTEx [15] projects. Despite their
widespread use, there has been concern about using LCLs
to model primary tissues, with two small-scale studies find-
ing differences in gene expression profiles between LCLs
and primary B cells [21, 22]. While these studies found
genes differentially expressed in LCLs compared to B cells,
for example the over-expression of cell cycle genes, the
regulatory mechanisms associated with this differential ex-
pression are not known.
Here we performed a detailed investigation of gene ex-

pression and gene regulatory networks using two cell line
and tissue pairs, LCL-vs-blood and fibroblast-vs-skin, to
understand the regulatory networks mediating expression
differences between the cell lines and their tissues of ori-
gin. Although we find that many pathways are preserved
between cell lines and their tissues of origin, some bio-
logical processes that help define the function of the pri-
mary tissue are enriched for genes expressed at lower
levels. In addition, we find that LCLs and fibroblast cell
lines exhibit large changes in their patterns of TF regula-
tion. For example, while cell cycle genes are over-
expressed in cell lines compared to their tissues of origin,

they have an overall decrease in negative regulation by
TFs that are known to function as repressors. These find-
ings suggest that changes in network properties are useful
for understanding alterations in gene regulation between
cell lines and their tissues of origin.

Results
Pathways differentially expressed between cell lines and
their tissues of origin
The GTEx project collected post mortem biopsies from
multiple tissues and created LCLs and fibroblast cell
lines. For the analyses described here, we used only data
from research subjects for whom primary tissue and
matching cell lines were available. Data (version 6.0)
were available for 127 paired whole blood samples and
LCLs, and for 244 paired full-thickness skin biopsies and
primary fibroblast cell lines [15]; 89 subjects have data
across all four groups. We did not find any clear separ-
ation of samples based on the year of analysis by the
GTEx project (Additional file 1). The cell lines and tis-
sues express similar numbers of genes mapped to similar
functional categories (protein coding, antisense, pseudo-
gene, lincRNA, and other; Additional file 1). Principal
component analysis (PCA) showed that gene expression
easily distinguishes the four groups (Additional file 1).
The first principal component and the majority of the
variability (37%) separated blood and LCLs from the skin
and fibroblast samples. The second component (22%)
separated tissues from cell lines. This indicates that
while the samples separate based on their tissues of ori-
gin, there is also a significant separation between cell
lines and primary tissues. The separation seen in the
PCA remains robust when random samples are selected
(Additional file 1).
In order to quantify the variability present within each

of these four groups of samples, we analyzed gene
expression variability across all cell line and tissue
groups and observed wider variability in gene expression
within tissue samples compared to cell line samples
(Additional file 2). We also used an f-test to evaluate the
differences in gene expression variance between the
groups. We found a higher percentage of genes with sig-
nificantly greater variance in blood compared to LCL,
and in skin compared to fibroblast (FDR < 0.05,
Additional file 2). Also, fibroblast have a higher percent-
age of genes with greater variance than LCL, and blood
have a higher percentage than skin. Although some gene
expression variability can be attributed to stochastic pro-
cesses, and tissue heterogeneity may contribute to these
observed differences, expression variability is also
strongly mediated by the genomic and epigenomic con-
text. For instance, expression variability can be modu-
lated in a tissue-specific fashion and determined by
promoter binding affinity [23].
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To explore gene regulation differences between cell lines
and their tissues of origin, we sought to identify both differ-
entially expressed genes and the pathways associated with
them, followed by an analysis of the drivers of the transcrip-
tional changes through gene regulatory network analysis.
We used voom [24] and Gene Set Enrichment Analysis
(GSEA) [25] to identify biological pathways that are
enriched in genes differentially expressed between cell lines
and their tissues of origin. We found 8617 genes (32%) to
be differentially expressed between LCL and blood samples
(absolute log2 fold change >2 and FDR < 0.05) with most of
the differentially expressed genes (71%) over-expressed in
LCL samples (Fig. 1a, Additional files 3 and 4). For the
fibroblast-vs-skin comparison, we identified 5655 differen-
tially expressed genes (21%). In contrast to the LCL-vs-
blood comparison, most of the differentially expressed

genes (68%) had increased expression in the primary tissue
rather than in the cell line.
Using GSEA, with genes ranked by the moderated t-

statistic from voom, we identified Kyoto Encyclopedia of
Genes and Genomes (KEGG) pathways [26] enriched for
differentially expressed genes between cell lines and their
tissues of origin. Consistent with the separation observed
in the PCA, both cell lines exhibit enrichment for path-
ways with similar biological functions compared to their
tissues of origin (Fig. 1b). While immune processes are
down-regulated in cell lines, the pathways with positive
enrichment are generally associated with cellular growth,
and include cell cycle, DNA replication and repair, and
transcription processes.
When comparing blood to LCLs, we found that path-

ways enriched in blood were related to immune system
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Fig. 1 Pathways are differentially expressed between cell lines and their tissues of origin. a Number of differentially expressed genes
(absolute log2 fold change >2 and FDR < 0.05) using voom on paired samples. b Results of GSEA reported based on the log10(FDR)
significance scale, with one group in red and the other one in blue. The 15 pathways most significantly differentially expressed between
each cell line and its tissue of origin. c Pathways enriched for at least two group comparisons (FDR < 0.05). The pathways differentially
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hierarchical clustering of the enrichment significance values, log10(FDR). To represent the FDR significance in the heatmap, the color was
saturated at 1.1 × 10−4. The exact reported FDR can be found in Additional file 2
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function, including complement and coagulation cascades,
hematopoietic cell lineage, chemokine signaling, and nat-
ural killer cell mediated cytotoxicity, while the pathways
enriched in LCLs were associated with cell growth and
death, DNA replication and repair, transcription, and me-
tabolism (FDR < 0.05, Fig. 1b). Similarly, when comparing
skin to fibroblasts, the pathways enriched in skin were re-
lated to the immune system, metabolism, cell adhesion,
and melanogenesis, while the pathways enriched in fibro-
blasts were associated with cell growth and death, DNA
replication and repair, transcription, and protein degrad-
ation (FDR < 0.05, Fig. 1b). The significance of all KEGG
pathways is listed in Additional file 5.
We also performed differential expression and KEGG

pathway enrichment analysis comparing the two tissues
and comparing the two cell lines (Fig. 1c). We found a
number of immune signaling pathways enriched in blood
compared to skin and in LCLs compared to fibroblasts.
For example, pathways related to the biological function
of B cells (B cell receptor signaling, toll-like receptor sig-
naling, antigen processing and presentation) were
enriched in LCL and blood samples when comparing
them to fibroblast and skin samples, respectively. How-
ever, some immune related pathways, including chemo-
kine signaling and natural killer cell mediated cytotoxicity,
were also enriched in LCL and blood samples compared
to fibroblast and skin samples, but they were expressed at
lower levels in LCL compared to blood samples. As ob-
served previously, these immune signaling pathways are
also significantly depleted in fibroblasts compared to skin,
which is a tissue with a key role in immunity and associ-
ated with many immune cell types [27].
The pathways enriched in fibroblast and skin samples

compared to LCL and blood samples, respectively, were
associated with biological processes related to maintain-
ing skin structure and organization and included cell-
cell junction, extracellular matrix interaction, and trans-
forming growth factor beta (TGF-β) signaling. We find
that pathways related to cell cycle and DNA repair are
enriched in cell lines compared to their tissues of origin,
and more enriched in LCLs compared to fibroblasts.
Overall, we found that the preserved pathways in cell

lines are mainly related to the cell type specific functions
(B cells or fibroblasts) rather than tissue-enriched func-
tions. Further, many of the genes in pathways that help
define the function of the tissue are expressed at a lower
level in cell lines relative to their tissues of origin.

Cell line and tissue-specific gene regulatory networks
Understanding the structure of gene regulation in cell
lines compared to their tissues of origin has the potential
to help interpret the differential expression results and
to reveal important regulatory differences. PANDA
(Passing Attributes between Networks for Data

Assimilation) is an approach that integrates multiple
types of genomic data to infer the network of interac-
tions between TFs and their target genes [28]. In con-
trast to other network reconstruction approaches,
PANDA searches for consistency across multiple sources
of information in order to build a holistic regulatory
model. The core of the PANDA algorithm is a message
passing approach in which regulatory processes are
modeled as a communication process between “trans-
mitters” (TFs) and “receivers” (target genes). For com-
munication to occur, both transmitters and receivers
play an active role: TFs are responsible for regulating
genes and the target genes must be available to be regu-
lated. PANDA starts with a TF/target gene prior regula-
tory network consisting of potential routes for
communication, which is built by mapping TFs motifs to
the genome. PANDA integrates this prior network with
protein-protein interaction (PPI) and gene expression
data, using it to model TF cooperativity and gene co-
expression, respectively. Based on this information, it
then iteratively estimates the most likely routes of com-
munication through the regulatory network.
We used PANDA to estimate gene regulatory net-

works in LCL, blood, fibroblast, and skin (Add-
itional file 6). For each network, we began with the same
TF/target gene prior regulatory network and PPI prior
network, but used “tissue”-specific gene expression data.
This resulted in four gene regulatory networks where
each edge connects a TF to a target gene, and the associ-
ated edge weight indicates the strength of the inferred
regulatory relationship in that “tissue”. These networks
can inform us about the genome-wide regulation of the
cell lines and tissues analyzed as we compare 652 TFs,
27,175 target genes, and more than 17 million edges be-
tween them.
We used bootstrapping to select random sets of RNA-

Seq expression data to estimate the robustness of these
network models, generating 100 random networks for
each of the cell line or tissue groups (Additional file 6).
We observed a high level of consistency across the boot-
strapped networks; the average weight of the edges
across these networks is highly similar to the weights of
the edges in the network estimated using all samples
(Pearson correlation ≥0.98).
For each TF we computed the difference between the

“out-degree” (sum of edge weights from that TF) in the
cell line network and the corresponding tissue of origin
network (Fig. 2a); these values are also highly robust
across our bootstrapped networks (Additional file 6).
We ranked TFs by their absolute difference in out-
degree (differential targeting, Additional file 7) and
found that TFs with the largest differential targeting
were involved in cellular responses to stress and DNA
damage and in the control of cellular growth (Fig. 2b,
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Additional file 8). For both the LCL-vs-blood and
fibroblast-vs-skin comparisons, many of the top
differentially-targeting TFs, such as tumor protein p63
(TP63), TOP1 binding arginine/serine rich protein
(TOPORS), and Kruppel like factor 15 (KLF15), belong
to the p53 family or interact with p53 and are important
mediators of DNA damage response regulating cell cycle
arrest, DNA repair and apoptosis [29–32].
We found Sp1 transcription factor (SP1) and Sp3 tran-

scription factor (SP3) had increased targeting in cell
lines in both the LCL-vs-blood and fibroblast-vs-skin
network comparisons. These TFs have more than 12,000
binding sites in the human genome and are involved in
essential cellular processes, including proliferation, dif-
ferentiation, and DNA damage response [33, 34]. It is
important to note that SP1 and SP3 are not differentially
expressed between cell line and tissue samples (Add-
itional file 8). However, network comparisons captured
the regulatory “rewiring” of these TFs and their target
genes, revealing potential differences in targeting even in
cases where the TFs themselves were not differentially
expressed. Thus, our network models suggest that TFs
alter their patterns of regulation in cell lines, either
through changing their expression or altering the genes
they target (Additional file 7).

Cell cycle pathway genes are less strongly targeted by
TFs in cell lines
We tested whether or not changes in inferred TF target-
ing preferentially affected genes belonging to specific
biological pathways. Similar to the TF’s out-degree, we
calculated each gene’s “in-degree” as the sum of edge

weights connected to a gene, which represents how
strongly targeted each gene is by the complete set of
TFs. Again, we find that these values are highly robust
across the bootstrapped networks (Additional file 6). We
compared the in-degree differences between cell lines
and tissues for genes of a specific pathway against all
other genes using an unpaired t-test (Additional file 9).
For the pathways over-expressed in the cell lines, such
as cell cycle, DNA repair, and DNA replication, we
found a marked reduction of targeting in cell lines com-
pared to their tissues of origin (Additional file 10).
To better understand these differences, we explored

the network around 121 genes in the KEGG cell cycle
pathway (Fig. 3, cell cycle gene names listed in Add-
itional file 11). When comparing the log2 fold change of
the expression levels of these genes with their edge
weight differences, we found a negative correlation for
many TFs. The TFs with the highest negative correlation
include SMAD family member 5 (SMAD5) (Fig. 4a), E2F
transcription factor 8 (E2F8), zinc finger and BTB do-
main containing 14 (ZBTB14), ETS variant 5 (ETV5),
helicase like transcription factor (HLTF), upstream tran-
scription factor 1 (USF1), IKAROS family zinc finger 1
(IKZF1), and upstream transcription factor 2, c-fos inter-
acting (USF2) (Additional file 12). This indicates that,
even though the cell cycle genes are over-expressed, they
are less strongly targeted by these TFs in LCLs com-
pared to blood. To confirm this, we used a permutation
analysis using random gene sets equal in size to the cell
cycle gene set. Based on this analysis all the negative
correlations for these eight TFs were identified as statis-
tically significant (FDR < 0.05).

a

b

Fig. 2 Transcription factors differentially-targeting genes in cell lines and their tissues of origin. a Illustration of the TF out-degree difference
between each cell line and its tissue of origin. Positive values indicate higher targeting in cell lines, and negative values indicate higher targeting
in tissues. b Function of the TFs with the largest difference in out-degree comparing LCL-vs-blood; and fibroblast-vs-skin regulatory networks. The
complete table with references and differential expression results is shown in Additional file 8
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This analysis suggests that these TFs play a role as
negative regulators of the cell cycle. Indeed, many of
these TFs are known regulators of the cell cycle, and
many have documented roles in repressing genes
that promote the cell cycle. For example, SMAD5
can repress transcription, leading to proliferation in-
hibition after TGF-β signaling [35], E2F8 directly
binds to E2F family target genes and repress their
transcription [36–38] and ZBTB14 is a transcrip-
tional repressor of the mouse myelocytomatosis
oncogene (Myc) gene [39].
To corroborate our network predictions, we examined

independent biological evidence to evaluate whether
these TFs regulate cell cycle genes. We downloaded the
LCL GM12878 ENCODE ChIP-Seq assays for the avail-
able TFs (SMAD5, IKZF1, USF1, USF2). We then identi-
fied the genes with peaks for these TFs in their
promoter region. We also calculated the correlation be-
tween the expression of each TF and the cell cycle genes
with TF ChIP-Seq binding evidence.

According to the ChIP-Seq data, SMAD5, the TF with
the highest inverse correlation between the expression
and targeting of cell cycle genes (Fig. 4a), binds to the
promoters of 55% of the genes included in our network
models. SMAD5 binds to the promoters of cell cycle
genes in a much higher proportion; 113 out of the 121
cell cycle genes are bound by SMAD5 (93%). As ex-
pected, we found a higher negative correlation between
the expression of SMAD5 and the expression of its tar-
get genes in cell lines compared to tissue samples in
GTEx (p-value = 8.7 × 10−09, Fig. 4b). The combined
GTEx/ENCODE results suggest that cell cycle regulation
involves a complex interplay between changes in the ex-
pression of regulatory TFs and alterations in the binding
of these TFs to their targets.
There is also extensive functional evidence that

SMAD5 targets genes to inhibit cellular growth. SMAD
proteins have a key role as signal transducers of the
TGF-β family members to mediate growth inhibition
and apoptosis [40]. SMAD5 negatively regulates cell

a b

c

Fig. 3 Cell cycle pathway genes are less strongly targeted by TFs in cell lines. a Group-specific gene regulatory networks were generated using
PANDA. The illustrations represent subnetworks of the 1000 edges with the highest edge weight difference between a cell line and its tissue of origin
around the cell cycle genes. The color indicates the edge weight strength between the TF and target gene (the edges shown have a weight greater
than 2 in at least one network). b Illustration of the gene in-degree difference between each cell line and its tissue of origin. Positive values indicate
higher targeting in cell lines, and negative values indicate higher targeting in tissues. c Boxplot of the gene in-degree differences for the genes in the
KEGG cell cycle pathway and for genes not in this pathway (significance measured using a t-test). Reduction of gene in-degree difference indicates that
the genes in the cell cycle pathway are less strongly targeted by TFs in the cell line compared to its tissue of origin
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proliferation during embryonic hematopoiesis [41], in B-
cell lymphoma [35], and it induces cell cycle arrest in re-
sponse to shear stress in tumor cell lines [42].
We repeated this analysis for the three other TFs with

ChIP-Seq data available in ENCODE (Additional file 12).
Based on the ChIP-Seq data, IKZF1 binds to the pro-
moter region of 20 out of the 121 cell cycle genes, USF1
binds to 52 genes, and USF2 binds to 78 genes. Figure 4c
shows a summary visualization of the expression correl-
ation between these four TFs and the cell cycle genes
with TF ChIP-Seq binding evidence. The blue edges rep-
resent negative correlation between the expression of
TFs and their target cell cycle genes, the higher number
of blue edges in LCLs compared to blood supports the
network-based conclusion that these TFs are negative
regulators of cell cycle genes in LCLs. For IKZF1 and

USF1 we do not find the same strong negative correl-
ation between the expression of the TFs and their target
genes. However, we note that the activity of TFs is not
only captured by mRNA levels; and it may also be a re-
sult of ligands binding and/or post-translational modifi-
cation. For example, USF1 gene regulatory properties
depend on its post-translational modification [43]. In
contrast to the expression correlation between TFs and
target genes, regulatory network analysis may capture
the regulatory activity of TFs regardless of differential
expression. Experimental analysis at a protein level could
confirm the regulatory activity of IKZF1 and USF1.
It has been previously reported that USF1 and USF2

have anti-proliferative roles. For example, loss or impair-
ment of USF transcriptional activity is a common event
in cancer cell lines and is associated with increased

a

c

b

Fig. 4 SMAD5 is differentially regulating cell cycle pathway genes. a Spearman correlation between the log2 fold change in gene expression
(LCL-blood difference) of KEGG cell cycle pathway genes and the differential targeting they receive by the TF SMAD5. Red: evidence of SMAD5
ChIP-Seq binding in the promoter of the gene, black: no evidence of SMAD5 binding. The negative correlation observed indicates the cell cycle
genes are more highly expressed but less targeted by SMAD5 in LCL compared to blood. b Boxplot of Spearman correlation coefficients between
SMAD5 expression levels and expression levels of all genes, and between SMAD5 expression levels and the expression levels of cell cycle genes with
SMAD5 ChIP-Seq binding evidence for LCL and blood samples. Difference in magnitude was tested using a Wilcoxon rank-sum test LCL-vs- blood
comparison. c Visualization of the correlation between TF and cell cycle gene expression for interactions that have ChIP-Seq binding evidence. More
positively-correlated associations are shown in red, more negatively correlated are blue, and correlations near zero are gray
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proliferation [44, 45]. Additionally, over-expression of
USF, and in particular USF2, is known to suppress
growth in a number of cell lines [46, 47]. Cyclin
dependent kinase 4 (CDK4), which controls the progres-
sion of cells through G1, is transcriptionally regulated by
USF1, USF2 and MYC in non-tumorigenic mammary
cells [48]. However, CDK4 gene regulation and its ability
to respond to signals change in breast cancer cell lines,
in which USF is transcriptionally inactive and CDK4 ex-
pression regulation independent of both USF and MYC
[48]. We found similar differences in CDK4 regulation
for the LCL-vs-blood networks comparison. Consistent
with CDK4 higher expression in LCLs (log2 fold change
of 2.8, FDR < 0.05), CDK4 is also less strongly targeted
by USF1, USF2, and MYC (edge weight differences of
0.85, 0.82, 0.98, respectively).
For fibroblast-vs-skin comparison, we did not find

the same strong negative correlation between cell
cycle gene expression and specific TF targeting (Add-
itional file 13). This may be due to the smaller
changes we observed in expression of cell cycle genes
in fibroblast-vs-skin, in contrast to the LCL-vs-blood
comparison. Also, as seen in Fig. 1c, genes in the cell
cycle pathway are more expressed in LCLs compared
to fibroblasts, which is potentially related to the fact
that LCL is a transformed cell line while fibroblast is
a primary cell line. However, when we analyzed the
relationship between SMAD5 and the cell cycle genes’
expression, we found similar results for fibroblasts
(Additional file 13), indicating that some of the pat-
terns we observe for LCLs may be true at a smaller
amplitude in other cell line models.

Discussion
Cell lines are widely used as experimental models to ex-
plore basic cellular biology, to study gene regulation, test
drug effectiveness and the impact of other compounds
on various tissues. One important question is whether
cell lines reflect the regulatory processes of the primary
tissues from which they are derived. By studying gene
expression and gene regulatory networks, we were able
to uncover patterns of transcriptional regulation that dif-
ferentiate cell lines from their tissues of origin. While
previous studies focused only on differential expression
analysis in a small number of samples, here we used a
large set of matched samples to model gene regulatory
networks. We were able not only to find the differences
in the expression profile of cell lines and their tissues of
origin, but also differences in TF regulation at a
genome-wide scale. To the best of our knowledge, this is
the first study that compares the differences in regula-
tory networks between cell lines and their tissues of ori-
gin, revealing differences in regulatory mechanisms not
observed in differential expression analyses.

In comparing LCL-vs-blood and fibroblast-vs-skin, we
find that these cell lines and their tissues of origin have
important transcriptional differences with approximately
26% of genes being differentially expressed. We identi-
fied the drivers of these transcriptional changes by mod-
eling gene regulatory networks and comparing the
regulatory networks of cell lines and their tissues of ori-
gin. We found that TFs involved in cellular responses to
stress and DNA damage, and in the control of cellular
growth had the largest changes in targeting. These net-
works captured the regulatory “rewiring” of TFs and
their target genes at a genome-wide scale, and revealed
that TFs alter their patterns of regulation in cell lines ei-
ther through changing their expression or altering the
genes they target.
By investigating differential targeting of specific bio-

logical processes, we found the most striking difference
in the regulation of processes associated with cellular
proliferation. Processes including cell cycle, DNA repair,
and DNA replication were more highly expressed in cell
lines, where they had lower overall targeting by a num-
ber of cell cycle-associated TFs that are known to func-
tion as repressors. The top TFs found to negatively
regulate the expression of cell cycle genes (SMAD5,
IKZF1, USF1, USF2) have been previously shown to have
a role as transcriptional repressors and as inhibitors of
cellular proliferation in tumor cell lines [35, 42, 44, 48].
We validated the negative correlation between the TFs
and cell cycle target genes expression using ENCODE
Chip-Seq as an independent data set. Our results indi-
cate that cell lines switch off a number of transcriptional
repressors, resulting in an overall increase in cell cycle-
related transcription.
Many regulatory mechanisms could be mediating

these changes including epigenetic changes. For ex-
ample, a recent study showed hypo-methylation of 250
genes after EBV transformation; in this case the cellular
machinery could not maintain DNA methylation [49].
While alterations in the epigenetic profiles of LCLs have
been demonstrated [22, 50], our analysis is the first to
explore the changes of TFs regulatory targeting. Study-
ing tissue heterogeneity and cell type-specific character-
istics could also reveal important regulatory mechanisms
that differentiate cell lines from tissues. Studies compar-
ing bulk RNA-Seq to single cell RNA-Seq have shown
the power of single cell RNA-Seq approaches to uncover
tissue heterogeneity, and also how computational decon-
volution approaches can be used to measure the cell
type composition of mixed tissues [3, 51–54].
The fact that the cell lines in the GTEx data set were

created in very different ways – one transformed and the
other a primary cell line – suggests that the global alter-
ations we observe in both types of cell lines in terms of
transcriptional patterns may be associated with growing
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in culture, the lack of tissue context, and decreased cel-
lular heterogeneity. Some of the changes may also be as-
sociated with the transformation process as we observed
smaller changes in expression and regulation of cell
cycle genes in fibroblasts compared to LCLs.
Our regulatory network analysis captured differences in

the cell line regulatory processes that could not have been
captured using more standard approaches such as differen-
tial expression analysis. For example, we identified TFs,
such as SP1 and SP3, that were not differentially expressed
between cell lines and their tissues of origin, but targeted
different genes. Additionally, we identified the transcrip-
tional regulatory differences between the cell lines and tis-
sues that are associated with the cell cycle genes’
differential expression. Our analysis focused on regulation
via promoters and did not include long-range enhancer
regulation. While many commonly used network methods
are based on pairwise co-expression information that does
not fully capture regulatory processes [55–57], PANDA’s
message-passing approach aims to infer complex regulatory
relationships between TFs and their target genes. PANDA
also has the advantage of integrating different types of gen-
omic data to give more informative results, and it outper-
forms other network methods in its ability to predict TF
binding site occupancy validated by ChIP data [28].

Conclusions
In our analysis we found that biological processes are differ-
entially targeted by TFs in LCLs and fibroblast cell lines
compared to their tissues of origin. While the existing lit-
erature includes evidence that cell lines have a higher ex-
pression of genes associated with proliferation [21, 22], here
we were able to identify the key transcriptional process that
drives these differences by applying regulatory network ana-
lysis. We were able to specifically find a number of cell
cycle-associated TFs that are known to function as repres-
sors that are less strongly regulating cell cycle genes in cell
lines compared to their tissues of origin.
Understanding that differences exist between cell lines

and tissues in patterns of TF targeting is important for
designing and interpreting experimental studies using
cell line models. This is especially true for the develop-
ment of targeted therapeutics, where targeted pathways
may be altered in cell lines relative to the tissues from
which they are derived. Our analysis demonstrates that
cell lines exhibit both gene expression and regulatory
changes that distinguish them from their primary tis-
sues, provides insights into which transcriptional pro-
cesses are altered, and identifies several regulators that
are likely mediating those changes. In addition to con-
sidering gene expression changes, considering regulatory
network topologies allows for a more complete under-
standing of the regulatory differences between cell lines
and their tissues of origin.

Methods
GTEx data
The GTEx version 6.0 RNA-Seq data set
(phs000424.v6.p1, 2015–10-05 released) was downloaded
from dbGaP (approved protocol #9112). Using YARN R
package (version 1.0.0) we performed quality control,
gene filtering, and normalization preprocessing [58]. We
grouped related body regions using gene expression
similarity. For example, skin samples from the lower leg
(sun exposed) and from the suprapubic region (sun un-
exposed) were grouped as “skin.” We filtered and nor-
malized the data in a tissue-aware manner using smooth
quantile normalization [github.com/stephaniehicks/
qsmooth] [59]. The final data set contains 549 research
subjects (188 females and 361 males) comprising 38 tis-
sues (which included two cell lines), 30,333 genes, and
9435 samples. We filtered sex-chromosome and mito-
chondrial genes (retaining 29,242 genes).
We reduced the data set to only cell line and tissue-

specific paired samples, which comprised 127 subjects
with whole blood and LCL samples, and 244 subjects
with skin and primary fibroblast cell line samples; 89
subjects have data across all four groups. For the skin
samples, an equivalent number of samples were obtained
from the lower leg (n = 123), and from the suprapubic
region (n = 121). We kept only the 27,175 genes with at
least one TF binding motif in its promoter region (see
section: Gene regulatory networks), so that we could use
the same set of genes for differential expression and
gene regulatory network analysis.
GTEx version 6.0 RNA-Seq was annotated using the

GENCODE release 19 (GRCh37.p13). Thus, we defined
the different types of genes (protein coding, antisense,
pseudogene, lincRNA, and other) according to the same
genome annotation downloaded from http://www.genco-
degenes.org/releases/19.html.

Principal components analysis
We performed principal component analysis (PCA) as
implemented in the plotOrd function on the R package
metagenomeSeq 1.12.1. PCA was applied to the full ex-
pression data matrix.

Differential expression analysis
Differential expression analysis was performed using
voom available in the limma Bioconductor R package
(version 3.26.9) [24]. We performed four analyses using
only paired samples between the groups of comparison:
1) LCL (n = 127) and Blood (n = 127), 2) Fibroblast
(n = 244) and Skin (n = 244), 3) LCL (n = 89) and Fibro-
blast (n = 89), 4) Blood (n = 89) and Skin (n = 89). Mul-
tiple testing correction was performed using Benjamini-
Hochberg. Genes with adjusted p-values less than an
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alpha of 0.05 and an absolute log2 fold change greater
than 2 were considered differentially expressed.

Pathway enrichment analysis
We performed GSEA to determine the biological func-
tions related to the differential expression between cell
lines and tissues [25]. All genes were ranked by the mod-
erated t-statistic produced by voom differential expression
analysis. We used pre-ranked GSEA program (Java com-
mand line version 2–2.0.13) to calculate a running-sum
statistic. We used the gene sets obtained from the KEGG
pathway database that was downloaded from the Molecu-
lar Signatures Database (MSigDB) (http://www.broadinsti-
tute.org/gsea/msigdb/collections.jsp) (“c2.cp.kegg.v5.0.-
symbols.gmt”). We performed 1000 gene set permutations
to assess the statistical significance, and considered gene
sets with FDR < 0.05 significant. We only considered gene
sets of size greater than 15 and less than 500 genes after
filtering out those genes not in the expression data set, or
176 gene sets in total.

Gene regulatory networks
We reconstructed gene regulatory networks using
PANDA, a message-passing model that integrates mul-
tiple types of genomic data and infers the network of in-
teractions between TFs and their target genes [28].
PANDA starts with a prior regulatory network inferred
by mapping TF binding sites to the genome, integrates
PPI and gene expression data to iteratively refine the
network structure and deduces a final consensus regula-
tory network. In the regulatory networks estimated by
PANDA, each edge connects a TF to a target gene, and
the edge weight indicates the strength of the inferred
regulatory relationship.
PANDA also iteratively refines other two network

types: the cooperativity network, which captures syner-
gistic interactions between TFs (initially estimated with
PPI data), and the co-regulatory network, which cap-
tures co-regulatory patterns between genes (initially esti-
mated with gene co-expression data). However, we
limited our analysis to the regulatory network.
We generated one PANDA regulatory network for each

group: LCL, blood, fibroblast, and skin (Additional file 6)
[28]. For each network, we used the same TF/target gene
prior regulatory network and the same PPI prior network
(see below). In creating the gene regulatory network
models, we used PANDA’s default parameters: the model
was run until it achieved a hamming distance of 0.001 and
the update parameter (alpha) was 0.1.
To generate the TF/target gene regulatory prior, we

downloaded all position weight matrices (PWM) for dir-
ect and inferred Homo sapiens motifs from the Catalog
of Inferred Sequence Binding Preferences (CIS-BP)
(2015–07-07) [60]. For each TF, we selected the motif

with the highest information content, total of 695 motifs.
We mapped the PWMs for these 695 motifs to promoter
regions of Ensembl gene (ENSG) ids using FIMO [61].
Motif mappings were parsed to only retain those below
p-value cut-off of 10−5 and ranging from -750 bp to
+250 bp around the transcription start site (TSS). A p-
value cut-off of 10−5 was chosen to balance the accuracy
of TF/target gene predictions and the density of the cor-
responding network of interactions (for a p-value accur-
acy below 10−5, the regulatory prior had approximately
9% of TF and target gene interactions). Finally, we kept
only TFs with at least one significant promoter hit and
genes that were found expressed in the GTEx filtered
and normalized data set, which resulted in a TF/target
gene prior of 652 TFs and 27,175 target genes.
To generate the PPI prior, we downloaded Homo sapi-

ens PPI interactions (9606.protein.links.v10.txt.gz) and
protein aliases (9606.protein.aliases.v10.txt.gz) from
StringDb v10 (2015–10-27). We parsed this PPI data set
for the 652 TFs in our TF/target gene prior. To make
the PPI prior in the same scale as the regulatory prior,
the PPI interaction scores were divided by 1000 (making
its range 0 to 1); self- interactions were set equal to one.
To run PANDA, for each sample group, we used the

TF/target gene prior, the PPI prior, and the sample group
gene expression data. The TF/target gene edge weights
emerging from PANDA were then used to compare net-
works between each cell line and its tissue of origin. For
pairs of networks, we compared the TF out-degree, de-
fined as the sum of edge weights from that TF, and the
gene in-degree, defined as the sum of all incoming edge
weights a gene received from all expressed TFs in the net-
work. The illustrations of the subnetworks were done
using Cytoscape default yFiles Organic layout (version
3.4.0) [62] where each edge connects a TF to a target gene,
and the edge weight is represented by the color shade.
To assess the robustness of the regulatory network

models, we used bootstrap sub-sampling of the RNA-Seq
datasets from the 89 paired samples across all four groups.
We did multiple random selections of 40 paired samples,
and generated 100 networks for each group: LCL, blood,
fibroblast, and skin. We then calculated the average and
standard deviation of the edge weights across the boot-
strapped networks and compared to the network obtained
from all the samples. We also compared degree centrality
measures (more specifically, the weighted out-degree and
in-degree differences between the corresponding cell line
and tissue networks) estimated from the bootstrapped
networks and the network obtained using all the samples.

ENCODE Chip-Seq data
Chip-Seq on GM12878 (type of LCL) targeting the TFs
SMAD5, IKZF1, USF1, and USF2 were downloaded from
the ENCODE Project (https://www.encodeproject.org,
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accessed 2016–06-03). We used the narrow peak data
processed by ENCODE from 2 biological replicates (ac-
cession: ENCFF553HHF, ENCFF001VEJ, ENCFF002CIB,
ENCFF001VFQ). Then, to identify genes bound by each
of these TFs we used bedtools (v2.17) to annotate peaks
that fall within the promoter region of a gene (same pro-
moter regions used for the network reconstruction, ran-
ging from -750 bp to +250 bp of the TSS).

Additional files

Additional file 1: Similarity between cell lines and their tissues of origin
based on gene expression. (A) Principal component analysis (PCA) was
performed to evaluate possible batch effects in the gene expression data.
Samples are labeled based on the year the sample was analyzed by the
GTEx project, and the plots show the sample separation for the first 7
PCs. (B) Number of genes expressed in each group (LCL, whole blood,
fibroblast, skin). Genes were separated into biological classes using the
definitions from GENCODE release 19 (GRCh37.p13). (C) PCA of paired
samples between the two tissues and cell lines (total of 89 subjects with
all four samples) based on the normalized expression of all genes. The
primary axis separates samples by tissue; the secondary axis separates
primary tissue from cell lines. (D) To access whether the PCA results were
dependent on the 89 samples chosen because they were present in all
four groups, we repeated the analysis 100 times using 89 randomly
selected samples in each group. The left panel shows the projection of
the first 2 PCs for one random analysis, and right panel shows the
distribution of PC1 and PC2 for each of the 100 analyses. (PDF 267 kb)

Additional file 2: Gene expression variability. (A) Density plot of the
gene expression standard deviation (SD) within each cell line/tissue
group. (B) F-test was performed to evaluate the differences in gene ex-
pression variance between the indicated groups. The histograms show
the ratio of variances at log scale for all the genes, and the red line indi-
cates similar gene expression variance between the two indicated
groups. The bar plots show the percentage of genes with significant dif-
ferences in variance (FDR < 0.05). (PDF 337 kb)

Additional file 3: Differential expression analysis. (A) Volcano plots of
the differential expression analysis using voom on paired samples
between the indicated groups. The lines indicate a log2 fold change of
−2 or 2. (B) Percentage of genes called differentially expressed (DE)
varying the log2 fold change at a FDR < 0.05. (PDF 1114 kb)

Additional file 4: Differentially expressed genes in each of the
comparisons: LCL-vs-blood; fibroblast-vs-skin; blood-vs-skin; LCL-vs-
fibroblast (absolute log2 fold change >2 and FDR < 0.05). (XLSX 2130 kb)

Additional file 5: Pathway enrichment analysis significance performed
by GSEA. (XLSX 90 kb)

Additional file 6: Reconstruction and robustness of gene regulatory
networks. (A) A cartoon of how the networks were generated. We used
PANDA, a message-passing network inference algorithm that integrates
multiple types of genomic data and infers the network of interactions be-
tween TFs and their target genes. PANDA uses a prior regulatory network
inferred by mapping TF binding sites to the genome (motif data), inte-
grates protein-protein interaction data and group-specific gene expres-
sion data to iteratively refine and deduce a final regulatory network. We
generated one PANDA network for each group: LCL, whole blood, fibro-
blasts, and skin. The illustrations represent an example subnetwork with 5
TFs and 50 of its target genes. The strength of the inferred regulatory re-
lationship is indicated by the edge thickness. Next, we did multiple ran-
dom selections of 40 paired samples, and generated 100 networks for
each group: LCL, blood, fibroblast, and skin. (B) Density plot of the stand-
ard deviation of the edge weights across the 100 bootstrapped networks
in each group: LCL, blood, fibroblast, and skin. (C) Scatter plot of the aver-
age edge weights obtained from the bootstrapped networks and the
edge weights from the network obtained using all the samples. (D) Scat-
ter plot of the TF out-degree differences between the indicated cell line

and tissue for the bootstrapped networks versus the network obtained
using all the samples. (E) Scatter plot of the gene in-degree differences
between the indicated cell line and tissue for the bootstrapped networks
versus the network obtained using all the samples. (PDF 1025 kb)

Additional file 7: Transcription factors differentially-targeting genes in cell
lines and their tissues of origin. (A) Distribution of TF out-degree difference
for LCL-vs-blood networks comparison (red) and for fibroblast-vs-skin net-
works comparison (blue). Positive values indicate higher targeting in cell
lines, and negative values indicate higher targeting in tissues. (B) Scatter
plots of t-statistic values for TF differential expression (voom) and “differen-
tial targeting” (paired t-test to compare the TF out-going edge weights be-
tween the cell line and tissue-specific networks) comparing LCL versus
blood (left panel); and fibroblasts versus skin (right panel). Red: TFs that
achieved significance for differential expression (FDR < 0.05 and absolute
log2 fold change >2) and for differential targeting (FDR < 0.05). (PDF 82 kb)

Additional file 8: Function of the TFs with the largest difference in out-
degree comparing LCL-vs-blood; and fibroblast-vs-skin regulatory net-
works. (XLSX 41 kb)

Additional file 9: Significance of the in-degree difference of genes be-
longing to a specific pathway against genes not in the pathway using an
unpaired t-test. (XLSX 36 kb)

Additional file 10: Transcriptional targeting of genes in the pathways
over-expressed for both cell lines. Boxplot of the gene in-degree differ-
ences for the genes in the specified pathway and for genes not in the
pathway (*FDR < 0.05 t-test). Reduction of gene in-degree difference indi-
cates that the genes in the pathway are less targeted by TFs in the cell
line compared to its tissue of origin. (PDF 140 kb)

Additional file 11: List of genes in the KEGG cell cycle pathway that are
found expressed in our data set. (XLSX 27 kb)

Additional file 12: Transcription factors differentially regulating genes in
the cell cycle pathway in LCLs compared to blood. (A) Spearman
correlation between the log2 fold change in gene expression (LCL-vs-
blood comparison) of KEGG cell cycle pathway genes and the differential
targeting they receive by the specified TF. Red: evidence of TF ChIP-Seq
binding on the promoter of the gene, black: no evidence of TF binding.
The negative correlation observed indicates the cell cycle genes are more
highly expressed but less targeted by the TF in LCL compared to blood.
(B) Boxplot of Spearman correlation coefficients between TF expression
levels and expression levels of all genes, and between TF expression
levels and the expression levels of cell cycle genes with TF ChIP-Seq
binding evidence for LCL and blood samples. Significance is based on a
Wilcoxon rank-sum test for LCL-vs-blood comparison. (PDF 213 kb)

Additional file 13: Cell cycle genes regulation by SMAD5 in fibroblast
and skin samples. (A) Spearman correlation between the log2 fold
change in gene expression (fibroblast-vs-skin comparison) of KEGG cell
cycle pathway genes and the differential targeting they receive by the TF
SMAD5. Blue: evidence of SMAD5 ChIP-Seq binding, black: no evidence
of SMAD5 binding. (B) Boxplot of Spearman correlation coefficients be-
tween SMAD5 expression levels and expression levels of all genes, and
between SMAD5 expression levels and the expression levels of cell cycle
target genes with SMAD5 ChIP-Seq binding evidence for fibroblast and
skin samples. Significance is based on a Wilcoxon rank-sum test for
fibroblast-vs-skin comparison. (PDF 79 kb)
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