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Abstract

Genome-wide scans for selection have identified multiple regions of the human genome as being targeted by positive
selection. However, only a small proportion has been replicated across studies, and the prevalence of positive selection as
a mechanism of adaptive change in humans remains controversial. Here we explore the power of two haplotype-based
statistics—the integrated haplotype score (iHS) and the Derived Intraallelic Nucleotide Diversity (DIND) test—in the
context of next-generation sequencing data, and evaluate their robustness to demography and other selection modes. We
show that these statistics are both powerful for the detection of recent positive selection, regardless of population history,
and robust to variation in coverage, with DIND being insensitive to very low coverage. We apply these statistics to whole-
genome sequence data sets from the 1000 Genomes Project and Complete Genomics. We found that putative targets of
selection were highly significantly enriched in genic and nonsynonymous single nucleotide polymorphisms, and that
DIND was more powerful than iHS in the context of small sample sizes, low-quality genotype calling, or poor coverage. As
we excluded genomic confounders and alternative selection models, such as background selection, the observed enrich-
ment attests to the action of recent, strong positive selection. Further support to the adaptive significance of these
genomic regions came from their enrichment in functional variants detected by genome-wide association studies,
informing the relationship between past selection and current benign and disease-related phenotypic variation. Our
results indicate that hard sweeps targeting low-frequency standing variation have played a moderate, albeit significant,
role in recent human evolution.
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Introduction

The detection of genomic regions that have been targeted by
recent positive selection has proved a powerful tool for de-
lineating genes contributing to adaptation to environmental
variables and for informing functions accounting for pheno-
typic diversity. Over the last decade, many genome-wide
scans for selection have been reported in humans, fueled by
the advent of whole-genome single nucleotide polymorphism
(SNP) data sets. These studies have made use of various sta-
tistical methods based on the predictable effects of positive
selection on patterns of genetic variation. These effects in-
clude a decrease in haplotype diversity (Voight et al. 2006;
Frazer et al. 2007; Sabeti et al. 2007; Tang et al. 2007; Pickrell
et al. 2009), high fraction of rare alleles (Carlson et al. 2005;
Kelley et al. 2006), or major shifts of allele frequency between
populations (Akey et al. 2002; Hinds et al. 2005; Weir et al.
2005; Frazer et al. 2007; Barreiro et al. 2008; Chen et al. 2010;
Oleksyk et al. 2010; Jin et al. 2012). These approaches have led
to the identification of several hundred genomic regions dis-
playing selection signals, suggesting the presence in these

regions of new beneficial mutations that have spread rapidly
through the population.

The more recent advent of whole-genome sequence
(WGS) data sets has provided unbiased information relating
to the spectrum of allelic variation, overcoming the SNP as-
certainment biases that characterize SNP genotyping data
sets, with a power of ~99% to detect variants with a popu-
lation frequency above 1%, for most of the genome (Abecasis
et al. 2012). For example, the 1000 Genomes (1000G) project,
both its Pilot and Phase 1 releases (1000 Genomes Project
Consortium 2010; Abecasis et al. 2012), and the Complete
Genomics (CG) data set (Drmanac et al. 2010) have provided
with 12–38 million SNPs from various populations worldwide.
This dramatic increase in the amount of sequence informa-
tion available, corresponding to up to ten times that provided
by the HapMap Consortium (Frazer et al. 2007; Altshuler et al.
2010), should provide increased power for evaluating the
impact and prevalence of selection on the human genome.
In this context, a recent study of the 1000G Pilot data set has
defined a list of genes for which there was compelling evi-
dence of positive selection (Grossman et al. 2013).
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Despite the considerable contribution of genome-wide
scans to our understanding of the effects of natural selection
on patterns of genome diversity, replication in different stud-
ies and functional support for adaptive significance have been
demonstrated for only a handful of genes (Akey 2009).
Furthermore, and more generally, the importance of positive
selection in shaping human diversity remains an open ques-
tion. Some studies have reported enrichment of certain func-
tional SNP classes among selection signals, suggesting a
nonnegligible prevalence of positive selection as a driving
force of human adaptation (Voight et al. 2006; Frazer et al.
2007; Barreiro et al. 2008; 1000 Genomes Project Consortium
2010; Jin et al. 2012). However, others have suggested that
these enrichment signals might actually result, at least in part,
from the action of background selection (Coop et al. 2009;
Pritchard et al. 2010; Hernandez et al. 2011). In addition, some
studies indicate that selection following the “hard sweep”
model, in which new advantageous mutations arise and
spread rapidly to fixation, has occurred only rarely in recent
human evolution (Hernandez et al. 2011; Granka et al. 2012).
Indeed, it has been proposed that many adaptive events have
occurred through other, largely undetected forms of positive
selection, such as polygenic adaptation or selection on stand-
ing variation (Pritchard and Di Rienzo 2010; Pritchard et al.
2010).

The lack of agreement between these selection studies
highlight the need to assess the power of statistical methods
for detecting the effects of positive selection in the context of
human demography and specifically of WGS (e.g., coverage,
SNP calling, number of individuals). For example, simulations
of populations of Drosophila and Anopheles mosquitoes (i.e.,
large populations with constant sizes of 106 individuals) have
already shown that low coverage can potentially impact the
power to detect selective sweeps (Crawford and Lazzaro
2012). It also remains unclear whether the evidence of positive
selection—that is, enrichment of genic regions, as opposed to
nongenic regions, among selection signals (Voight et al. 2006;
Barreiro et al. 2008; Jin et al. 2012)—can be extended to WGS
data sets and is robust to alternative selection scenarios, such
as background selection. In light of the increasing amount of
WGS data sets, there is a methodological need to address
these issues as an indispensable prerequisite to explore the
occurrence of selection in the genomes of humans and other
species.

In this study, we aimed to explore the prevalence of recent,
strong positive selection (i.e., the hard sweep model) in
human adaptation, using WGS data sets. To do so, we first
performed a simulation study based on realistic models of
human demography and determined the power of relevant
neutrality statistics for detecting recent population-specific
positive selection, considering the features of current WGS
data sets, such as differences in coverage and sample size. We
next evaluated the sensitivity of these statistics to other se-
lective regimes, such as polygenic adaptation, positive selec-
tion on standing variation and background selection. We
then analyzed the 1000G and CG data sets and found enrich-
ment of some functional SNP classes among selection signals,
controlling explicitly for potential confounding factors. Lastly,

we searched for functional support of the adaptive signifi-
cance of genomic regions enriched in selection signals and
found that these regions are indeed enriched for SNPs asso-
ciated with phenotypic variation, both benign and disease
related.

Results

Power to Detect Recent Hard Sweeps from Next-
Generation Sequencing Data

We first evaluated the power to detect recent hard sweeps
over a large range of allele frequencies, from next-generation
sequencing data. We simulated autosomal regions under neu-
tral and hard sweep assumptions, using for both the same
calibrated model designed to match realistic scenarios of
human demography (fig. 1A; supplementary text, table S1,
and fig. S1, Supplementary Material online) (Voight et al.
2005; Laval et al. 2010; Gravel et al. 2011). Indeed, publicly
available WGS data sets, such as the 1000G and CG data sets,
include continental populations with different demographic
histories, a feature known to affect the power of neutrality
statistics (Pickrell et al. 2009; Li 2011). We focused on two
haplotype-based statistics that are known to exhibit high
power to detect positive selection over a large range of
allele frequencies (Voight et al. 2006; Barreiro et al. 2009)
and expected to be insensitive to background selection,
that is, there is no prior reason that background selection
differentially affects the haplotypes sharing the ancestral or
derived allele. This contrast with statistics based on popula-
tion differentiation, such as FST, where distinguishing the ef-
fects of positive and background selection is more challenging
(Hernandez et al. 2011). We thus used the integrated haplo-
type score (iHS), which measures the difference in haplotype
homozygosity associated with the ancestral and derived al-
leles (Voight et al. 2006), and the Derived Intraallelic
Nucleotide Diversity (DIND) test, which measures the differ-
ences in nucleotide diversity associated with the ancestral and
derived alleles (Barreiro et al. 2009). This choice was also based
on the fact that iHS has been successfully used to detect
strong signals of positive selection in genotyping data—that
is, significant enrichment of functional sites among selection
signals (Voight et al. 2006), and DIND was designed to make
full use of resequencing data (Barreiro et al. 2009).
Furthermore, in line with our aims, both iHS and DIND exhibit
substantial power over a large range of allele frequencies of
the selected mutation (Voight et al. 2006; Barreiro et al. 2008),
in contrast with other statistics such as XP-EHH or composite
likelihood ratio (CLR), which are known to detect almost-
completed or recently completed sweeps (i.e., frequency of
the selected allele> 0.8) (Nielsen et al. 2005; Sabeti et al. 2007;
Williamson et al. 2007; Casto et al. 2010).

To validate our simulation process, we estimated the
power of iHS and DIND, assuming genotypes and gametic
phases to be known (i.e., “full sequence data,” fig. 1B, see
Materials and Methods). We set 2Ns (N being the effective
size and s being the selection coefficient) to 100 and simu-
lated 100-kb DNA regions. Consistent with simpler scenarios
of populations of constant size that used similar parameters
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(Voight et al. 2006; Barreiro et al. 2009), iHS and DIND had a
power of almost zero for selected allele frequencies (SAF)
below 0.2, increasing rapidly to 80–100% for SAFs above 0.4
(fig. 2). In addition, the power computed as a function of SAF
was similar to that found in a previous study specifying selec-
tion intensity on the basis of the age and the final frequency
of the selected allele (Grossman et al. 2013). As expected, iHS
and DIND clearly outperformed various neutrality statistics

based on the allele frequency spectrum (AFS), even when we
assumed realistic demographic models (supplementary table
S2, Supplementary Material online). At the population level,
the power of iHS and DIND was higher in African (78.90% and
76.06%, respectively) than in Eurasian populations (40.98%
and 38.20%, respectively), highlighting the impact of demog-
raphy on the power of these statistics. Furthermore, the
power of both statistics was found to be similar after

FIG. 1. Demographic model and flow chart used for the simulations. (A) Demographic model. The model used for the simulations considers that the
ancestral Eurasian population split from the initial ancestral population (NA) 60,000 years ago (60 kya) and went through a bottleneck reducing by half
its effective population size. European and Asian populations diverged 20,000 years ago (20 kya) and went through recent expansions, corresponding to
the Neolithic transition, increasing their effective size by 100. The expansion of the African population increased its effective size by 50. The migration
parameter m is set to 1.3� 10�5. We used this calibrated demographic model to perform all subsequent simulations, that is, neutral simulations as well
as those under various models of selection (recent selective sweep, background selection, and interaction between recent selective sweep and
background selection, see Materials and Methods). (B) Flow chart for the simulations. To mimic 1000G Pilot data (green pipeline), we simulated
low coverage from the “full sequence data” and inferred gametic phases. To mimic CG data (orange pipeline), we randomly sampled individuals from
the “full sequence data” simulations and inferred gametic phases. Given the high coverage of the CG data set (read depth per site of 50� in average with
99% confidence interval ranging from 26� to 107� in Africa, 29� to 110� in Europe, and 17� to 75� in Asia), we did not simulate coverage, as this
should not impact the power of DIND and iHS.
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simulation of variation in recombination rate (i.e., presence of
hotspots) and mutation rate (i.e., SNP density) (supplemen-
tary figs. S2 and S3, Supplementary Material online). The only
exception to this trend was when SNP density was very low,
where the power of iHS dropped dramatically as previously
observed (Crisci et al. 2013), while that of DIND decreased
only moderately. Overall, our simulations indicated that these
haplotype-based statistics constituted powerful tests for de-
tecting the effect of recent hard sweeps on a large range of
allele frequencies in the context of full sequence data sets,
regardless of the demographic history of the population
considered.

We then investigated the effects of variation in coverage
and sample size, characterizing WGS data sets, on the power

of iHS and DIND. The 1000G Pilot data set is characterized by
sample sizes of ~60 individuals per population sequenced at
low coverage (3–5�), whereas the CG data set is character-
ized by small sample sizes (8–13 individuals per population)
sequenced at high coverage (50�). We thus simulated data
sets mimicking the 1000G Pilot (“low-coverage data”) and CG
(“small-sample size data”) data sets and considered the un-
certainty associated with haplotype phasing using MaCH
and SHAPEIT (Li et al. 2010; Delaneau et al. 2012) (see
Materials and Methods, fig. 1B). The power of both statistics
varied with the frequency of the selected allele, as previously
shown (fig. 2). Comparison of the full sequence and low-cov-
erage simulated data sets demonstrated that low coverage
had no impact on the power of DIND but slightly affected the

FIG. 2. Power of iHS and DIND to detect recent hard sweeps as a function of SAF. Critical values for both statistics, at FPR = 0.01, were obtained from 104

neutral simulations (2Ns = 0). For each simulation performed under recent positive selection (2Ns = 100), we used the proportion of extreme iHS and
DIND values (see Materials and Methods). (A–C) Simulated “full sequence data” and “low-coverage data” (5� for Africans, 4� for Europeans, and 3�
for Asians). (D–F) Simulated “full sequence data” and “small-sample size data” (13 individuals for Africans and Europeans, 8 individuals for Asians). In
each case, we performed a total of about 2,000 simulations. (A, D) African population. (B, E) European population. (C, F) Asian population.
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power of iHS (fig. 3A and C). By contrast, small sample sizes
similar to those of the CG data set had a strong impact on the
power of both statistics, this effect being most pronounced
for iHS (fig. 3B and D). Note that the phasing process did not
alter the power of iHS and DIND, as it was found to be similar
with either inferred or known gametic phases (fig. 3A). In
addition, the power was found to be similar when individual
gametic phases were inferred either with MaCH or SHAPEIT
(data not shown).

Overall, we found that sample size had a stronger effect on
the power of these tests than coverage, which had little

impact on power, with the DIND test being insensitive to
even very low depth of coverage (~3�).

Robustness of iHS and DIND to Alternative Selective
Regimes

Selective processes such as background selection, that is, the
reduction in variability at neutral or nearly neutral sites due to
selection against linked deleterious alleles (Charlesworth et al.
1997; Charlesworth 2012), can mimic the patterns left by
positive selection, generating spurious “positive selection”

FIG. 3. Effect of low coverage and low sample size on the power to detect recent hard sweeps. (A) and (B) Power of iHS and DIND summed over a wide
range of SAFs (simulations with SAF�0.2 are considered together). (C) and (D) Power of iHS and DIND obtained within the context of next-generation
sequencing data (“low-coverage data” or “small-sample size data”) divided by the same power obtained with “full sequence data.” For example, a ratio of
0.6 indicates that the power obtained with “low-coverage data” is 60% to that obtained with full sequence data. (A) and (C) “Low-coverage data” versus
“full sequence data.” The coverage is indicated for each population. (B) and (D) “Small-sample size data” versus “full sequence data” (60 individuals). The
number of individuals is indicated for each population.
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signals in some cases (Hernandez et al. 2011). We determined
the extent to which iHS and DIND were sensitive to back-
ground selection. Given that 30–40% of human nonsynony-
mous mutations have been suggested to be highly deleterious
or lethal ( j s j > 1% i.e., 2Ns lower than�200 in humans, see
Boyko et al. [2008]), we simulated genomic regions with 20%
of sites under negative selection, mimicking the selective fea-
tures that can be observed in coding regions. We used various
values of the population genetic selection parameter 2Ns,
ranging from �1 to �500 (supplementary table S3,
Supplementary Material online). The proportion of simulated
sequences under background selection detected with iHS and
DIND at a false positive rate (FPR) of 1% ranged from 0% to
2.5% (average ~1%), indicating that neither of these tests
could detect this selective regime. Because the patterns of
genetic variation can be the target of multiple modes of se-
lection (Hernandez et al. 2011), we next explored whether
background selection can alter the signal of a hard sweep. We
tested whether negatively selected mutations segregating
near positively selected variants affect the power of iHS and
DIND, by simulating 100-kb regions in which a new advanta-
geous mutation (2Ns = 100) was inserted in a genetic back-
ground where 20% of sites were negatively selected (see
Materials and Methods). We found that background selection
does not alter the power to detect selection following a hard
sweep model (supplementary fig. S4, Supplementary Material
online).

Alternative models of positive selection, such as polygenic
adaptation or selection on standing variation, can also play an
important role in adaptation, but their effects are more dif-
ficult to detect (Pritchard and Di Rienzo 2010; Pritchard et al.
2010). We evaluated the power of iHS and DIND to detect
polygenic adaptation, which was modeled here as weak pos-
itive selection acting on many independent loci. This model of
polygenic adaption has been proposed as an alternative
model to rapid genetic adaptation, in light of the highly poly-
genic architecture of many traits in humans (Turchin et al.
2012). We thus simulated positive selection models with a
low 2Ns (2Ns = 5, supplementary table S4, Supplementary
Material online), keeping unchanged all the other parameters
used to simulate hard sweeps (see Material and Methods).
Neither DIND nor iHS detected a selection signal at low values
of 2Ns, as low 2Ns values lead to small shifts in the frequency
of the selected alleles, as predicted under a model of polygenic
adaptation acting through weak selection (Pritchard and Di
Rienzo 2010; Pritchard et al. 2010). Consequently, our results
support the notion that conventional methods have little
power to detect signatures of polygenic adaptation (Chevin
and Hospital 2008; Pritchard and Di Rienzo 2010; Pritchard
et al. 2010).

Finally, we performed simulations of positive selection on
standing variation, that is, a neutral or mildly deleterious allele
that is already segregating in the population at a frequency
greater than 1/2N suddenly becomes positively selected and
increases in frequency (Przeworski et al. 2005; Pritchard and
Di Rienzo 2010; Pritchard et al. 2010). We evaluated the power
of iHS and DIND for an initial frequency of the selected allele
from 0.01 to 0.5 and used values of 2Ns ranging from 100 to

1,000 (supplementary table S5, Supplementary Material
online). To do so, we used mpop software (Pickrell et al.
2009), which allows simulations only in a constant-size pop-
ulation model (see Materials and Methods). The power of iHS
and DIND was found to decrease with increasing initial fre-
quency of the selected allele, as high initial frequencies reduce
the signature of the sweep around the selected site
(Przeworski et al. 2005). For example, the power of both sta-
tistics was lower, by a factor of 4, for initial frequencies of the
selected allele�0.2 and a 2Ns = 100. The application of such a
decrease in power to the results of iHS and DIND obtained
considering appropriate demographic histories and mimick-
ing WGS data (fig. 3A and B) would yield a power of less than
10% for non-African samples. Moreover, no signals of positive
selection on standing variation were detected (data not
shown) when simulations were performed with low values
of 2Ns (2Ns< 10), because the frequency shifts of the selected
alleles were, as for polygenic adaptation by weak selection, too
small to be detected.

Our simulation results demonstrate that iHS and DIND are
insensitive to background selection and underpowered for
the detection of polygenic adaptation or recent positive se-
lection on standing variation when the selected allele has an
initial frequency of 0.2 or above. Thus, the signals of positive
selection detected by DIND and iHS in WGS data sets should
reflect the effects of recent, strong positive selection targeting
either a newly arisen allele (i.e., hard sweep stricto sensu) or
standing mutations with a preselection frequency lower than
0.2 (nearly hard sweep).

Assessment of the Genome-Wide Extent of Selection
Using Functional SNP Classes

To assess the extent of positive selection at the genome-wide
level and to evaluate whether iHS and DIND are able to detect
enrichment in selection signals in particular SNP functional
classes from WGS data sets, we analyzed the 1000G and CG
data sets (supplementary fig. S5 and table S6, Supplementary
Material online). In classical outlier approaches, which identify
SNPs presenting extreme values for a given statistic as dis-
playing evidence of selection, the proportion of false positives
remains unknown and can be high (Kelley et al. 2006; Teshima
et al. 2006). Here, we overcome this caveat by applying the
following rationale: if positive selection has preferentially tar-
geted functionally important loci, then we would expect an
enrichment of certain functional SNP classes among extreme
values for a particular statistic (Voight et al. 2006; Barreiro
et al. 2008; Jin et al. 2012). For example, it has been shown that
positive selection can create strong clustering of extreme iHS
values yielding strong enrichments of such extreme values
within genes (Voight et al. 2006). We therefore investigated
whether iHS and DIND outliers (the top 1% of values for each
statistic) were more strongly enriched in putatively functional
SNPs (i.e., genic or nonsynonymous SNPs) than in nongenic
SNPs (supplementary table S7, Supplementary Material
online). This approach, which allows quantifying the propor-
tions of false-positive signals, should make it possible to
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deduce the proportion of outliers genuinely targeted by pos-
itive selection.

We thus calculated iHS and DIND for the phased data of
each population of the 1000G Pilot and the CG data sets,
using windows of 100 kb centered on each SNP (i.e., the core
SNP) and retaining only those for which the derived state of
the core SNP was unambiguously determined. We minimized
the FPR by excluding windows in which the core SNP had a
derived allele frequency (DAF) below 0.2, given that these
tests had a power close to zero in such conditions (fig. 2
and supplementary table S2, Supplementary Material
online). We assessed enrichment of SNP classes among out-
liers by logistic regression, generating an odds ratio (OR) for
the effect of recent positive selection. If selection has occurred
in genic regions, an OR> 1 would be expected, reflecting the
enrichment of genic SNPs among outliers (e.g., OR = 1.25
when there are 20% true and 80% false-positive SNPs
among genic outliers). Otherwise (i.e., 100% of false positives
among genic outliers), we would expect an OR� 1, indicating
that the proportion of genic SNPs among outliers is no greater
than the proportion of genic SNPs among all SNPs (~38% for
the 1000G and CG data sets, supplementary table S7,
Supplementary Material online). We also controlled for var-
ious potential confounding factors, such as genomic variation
in coverage, recombination rate, and the number of SNPs per
window, and calculated corrected ORs (ORC, see Materials
and Methods).

With DIND, significant enrichment in genic SNPs was ob-
served for both the 1000G Pilot and CG data sets (table 1).
These enrichments were found to be robust to the confound-
ing factors tested (ORC> 1) and were highly significant when
compared with several genomic resamplings (table 1, see
Materials and Methods). Likewise, DIND outliers displayed a
greater enrichment in nonsynonymous SNPs, with respect to
nongenic SNPs, although the statistical significance of this
enrichment was lower due to the small number of nonsyn-
onymous SNPs tested (table 1). In contrast with the results
obtained for Africans and Europeans, almost no significant
enrichment was observed for Asians from the 1000G Pilot and
CG data sets (ORC = 0.97 and ORC = 0.98, table 1). In the CG

data set, sample size was the smallest for the Asian popula-
tion, confirming the critical nature of this experimental spe-
cification (fig. 3B and D). In the 1000G Pilot data set, the low
coverage of Asians (~3�) would not be expected to mask the
enrichments resulting from selection, given the results of our
simulations (fig. 3A and C). We thus reasoned that another
aspect of the data, such as genotype calling errors, might have
decreased the power to detect selection in the pilot data. We
tested this hypothesis using the 1000G Phase 1 data set, in
which genotype quality and coverage were improved for
African (AFR) and Asian (ASN) samples (Abecasis et al.
2012). Using this data set, we retrieved a signal in the Asian
sample, which displayed highly significant enrichment
(ORC = 1.49, table 1). This finding clearly indicates that
DIND is insensitive to low coverage (e.g., 4.3� for the
Phase 1 ASN sample) but highlights the ability of the geno-
type calling errors inherent to low-coverage data sets to wipe
out the selection signal.

By contrast, no significant enrichment of genic SNPs was
observed among iHS outliers in any of the various data sets
studied (table 1). This finding contrasts with previous results
for iHS and the HapMap genotyping data set, reporting highly
significant enrichments (Voight et al. 2006). We first investi-
gated whether our methodology (i.e., resampling scheme for
significance calculation and window size) could account for
such an absence of enrichment (supplementary text,
Supplementary Material online). We found that the enrich-
ment was replicated when our method was applied to the
HapMap data and that the results obtained were indepen-
dent of the window size used (supplementary fig. S6, tables S8
and S9, Supplementary Material online). Our results may,
therefore, simply reflect an inadequacy of iHS to detect an
enrichment in putative targets of selection in the specific
context of the WGS data set used (i.e., low coverage and
poor genotype calling quality, or small sample size). When
we used the 1000G Phase 1 data set, for which the genotype
calling quality was higher, we observed a slightly significant
enrichment in Europeans, despite the similar mean coverage
between the two 1000G data sets (4.5� for Phase 1 vs. 5.1�
for Pilot) (table 1). These results suggest that iHS, which we

Table 1. Enrichment of Genic and Nonsynonymous SNPs, as Opposed to Nongenic SNPs, among iHS and DIND Outliers Calculated on 100-kb
Windows.

Population OR Genic vs. Nongenic Nonsynonymous vs. Nongenic

1000G Pilot CG 1000G Phase1 1000G Pilot CG 1000G Phase 1

DIND iHS DIND iHS DIND iHS DIND iHS DIND iHS DIND iHS

AFR OR 1.34*** 0.76 1.27*** 0.96 1.50*** 0.87 1.23** 0.68 1.40*** 0.98 1.53*** 0.68
ORC 1.27*** 0.81 1.09** 0.98 1.28*** 0.92 1.18 0.72 1.17* 1.00 1.47*** 0.67

EUR OR 1.22*** 0.82 1.13*** 1.01 1.34*** 0.96 1.25** 1.02 1.04 1.04 1.30** 1.10
ORC 1.22*** 1.02 1.28*** 1.07 1.29*** 1.11* 1.22* 1.21 1.13 1.09 1.24** 1.17

ASN OR 0.95 0.79 0.86 1.02 1.38*** 0.90 1.01 0.63 0.95 0.65 1.33*** 0.91
ORC 0.97 0.96 0.98 1.07 1.49*** 1.02 1.16* 0.86 1.05 0.69 1.62*** 0.98

NOTE.—ORC indicates that the logistic regression used to calculate the OR controlled for the following confounding factors: mean recombination rate, mean coverage, and
number of SNPs per window.

*P< 0.05; **P< 0.01; ***P< 0.001.
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found to be slightly more sensitive to coverage than DIND
(figs. 2 and 3), is also sensitive to the genotype calling quality
of the data.

When several potentially confounding factors were taken
into account, our analyses showed that DIND was more pow-
erful than iHS for detecting an enrichment of certain SNP
functional classes among putative targets of selection, in the
context of both small sample sizes (CG data set) and low
genotype calling quality/low coverage (1000G Pilot and
Phase 1 data sets). Given that our simulations showed that
DIND was mostly insensitive to other selective regimes, these
enrichments probably reflect the action of recent, strong pos-
itive selection.

Genomic Regions Enriched in Selection Signals
Present Robust Evidence of Positive Selection

To assess whether genomic regions enriched in selection sig-
nals are biologically meaningful, we considered the distribu-
tion of SNPs presenting outlier iHS and DIND values along the
genome, to detect regions potentially targeted by selection,
given that positive selection tends to create local clustering of
outliers (Voight et al. 2006). We evaluated the extent to which
these regions overlap with genes displaying identified, robust
signals of positive selection. Specifically, we searched for re-
gions presenting the greatest clustering of extreme values of
iHS and DIND (i.e., the 1% of 100-kb sliding windows present-
ing the highest proportion of iHS or DIND outliers) in each
data set, 1000G Pilot, 1000G Phase 1, and CG (supplementary
tables S10–S12, Supplementary Material online). Because the
number of SNPs varies across sliding windows, we grouped
windows into bins presenting similar numbers of SNPs and
determined the 1% highest proportion of iHS or DIND out-
liers separately for each bin (Voight et al. 2006). As iHS and
DIND were found to have maximum power for the detection
of positive selection with high 2Ns, our set of genes with
extreme outlier clustering should overlap, to a large extent,
the regions of the genome previously found to present robust
signatures of strong positive selection. We thus compared it
to 1) the list of genes presenting signals consistent with the
hard sweep model (2Ns = 200–800) using iHS (Voight et al.
2006) and 2) the top list of candidate genes obtained with
various linkage disequilibrium (LD)-based statistics, for exam-
ple, LRH and XP-EHH (Sabeti et al. 2007). The genes with
extreme DIND outlier clustering in the 1000G Pilot, 1000G
Phase 1, and CG data sets included 42%, 50%, and 42%, re-
spectively, of the top genes detected by these previous stud-
ies, whereas iHS detected only 19%, 34%, and 19%,
respectively (table 2).

DIND retrieved well-known signals of positive selection,
some of which were strongly supported by functional data
(fig. 4A and B; supplementary figs. S7–S11, Supplementary
Material online). For example, DIND consistently identified,
across the three WGS data sets, the emblematic case of the
rs4988235 mutation in the lactase (LCT) gene region, which is
known to be associated with persistence of lactase activity in
adulthood (Enattah et al. 2002; Bersaglieri et al. 2004; Kelley
and Swanson 2008). This mutation is the core SNP of a 100-kb

window located in the peak of the DIND signal and contain-
ing the second highest proportion of SNP outliers of the LCT
region (fig. 4A; supplementary figs. S7–S11, Supplementary
Material online). Likewise, DIND retrieved the well-known
cases of the ADH cluster and the EDAR gene (table 2)
(Osier et al. 2002; Carlson et al. 2005; Sabeti et al. 2007;
Barreiro et al. 2008). For EDAR, the signal retrieved from the
1000G data set encompassed the nonsynonymous V370A
mutation (rs3827760), which has been associated with hair
thickness, tooth morphology, and the number of eccrine
sweat glands (Fujimoto et al. 2008; Kamberov et al. 2013)
(fig. 4B; supplementary figs. S10–S11, Supplementary
Material online). Conversely, none of these emblematic
cases of selection was detected by iHS in the CG and
1000G Pilot data sets (table 2, fig. 4A and B; supplementary
figs. S7–S9, Supplementary Material online), with the excep-
tion of the LCT region in the CG data, but only if 1-Mb
windows were used (supplementary fig. S9A,
Supplementary Material online). The strong selection signals
of both EDAR and LCT were restored when iHS was applied to
the 1000G Phase 1 data set (supplementary figs. S10B and
S11A and B, Supplementary Material online). These examples
highlight again the sensitivity of iHS to both low coverage and
the quality of genotyping calls. Consistent with the results of
enrichment analyses among functional SNP classes, DIND did
replicate signals of strong, recent positive selection more ef-
fectively than iHS.

Functional and Medical Relevance of Regions
Enriched in Signals of Selection

To provide additional support to the adaptive significance of
the genomic regions enriched in selection signals, we next
investigated the extent to which these regions were enriched
in SNPs that are likely to have functional consequences, that is
SNPs associated with phenotype traits or disease by genome-
wide association studies (here termed as GWAS-SNPs, see
Materials and Methods) (Hindorff et al. 2009). Given the
higher performance of DIND, with respect to iHS, with
WGS data sets, we restricted our analysis to DIND outlier
regions. We found a genome-wide enrichment of GWAS-
SNPs in Africans and, even more so, in Europeans, as expected,
given that most GWAS have been performed in populations
of European descent (fig. 5A and B; supplementary table S13,
Supplementary Material online). Likewise, when focusing on
particular traits or diseases overrepresented among DIND
outliers in each population, Europeans displayed the highest
number of enriched categories (supplementary table S14,
Supplementary Material online). For example, various outlier
SNPs were found to be associated with skin pigmentation,
such as rs1667394 A/G in OCA2 or rs916977 A/G in HERC2, for
which the selected allele is associated with fairer skin, hair, and
eye color (supplementary table S15, Supplementary Material
online). This observation is consistent with a Gene Ontology
(GO) analysis in which subcategories relating to pigmentation
are enriched in genes with extreme DIND outlier clustering in
Europeans (e.g., melanocyte differentiation, pigment cell dif-
ferentiation, supplementary table S16, Supplementary

1857

Occurrence of Classic Selective Sweeps in Humans . doi:10.1093/molbev/msu118 MBE
D

ow
nloaded from

 https://academ
ic.oup.com

/m
be/article/31/7/1850/2925688 by guest on 18 N

ovem
ber 2020

if 
http://mbe.oxfordjournals.org/lookup/suppl/doi:10.1093/molbev/msu118/-/DC1
http://mbe.oxfordjournals.org/lookup/suppl/doi:10.1093/molbev/msu118/-/DC1
http://mbe.oxfordjournals.org/lookup/suppl/doi:10.1093/molbev/msu118/-/DC1
 Material
,
(i
=
-
,
(ii
e.g.
,
http://mbe.oxfordjournals.org/lookup/suppl/doi:10.1093/molbev/msu118/-/DC1
http://mbe.oxfordjournals.org/lookup/suppl/doi:10.1093/molbev/msu118/-/DC1
http://mbe.oxfordjournals.org/lookup/suppl/doi:10.1093/molbev/msu118/-/DC1
 Material
http://mbe.oxfordjournals.org/lookup/suppl/doi:10.1093/molbev/msu118/-/DC1
http://mbe.oxfordjournals.org/lookup/suppl/doi:10.1093/molbev/msu118/-/DC1
http://mbe.oxfordjournals.org/lookup/suppl/doi:10.1093/molbev/msu118/-/DC1
 Material
-
http://mbe.oxfordjournals.org/lookup/suppl/doi:10.1093/molbev/msu118/-/DC1
http://mbe.oxfordjournals.org/lookup/suppl/doi:10.1093/molbev/msu118/-/DC1
http://mbe.oxfordjournals.org/lookup/suppl/doi:10.1093/molbev/msu118/-/DC1
 Material
,
http://mbe.oxfordjournals.org/lookup/suppl/doi:10.1093/molbev/msu118/-/DC1
http://mbe.oxfordjournals.org/lookup/suppl/doi:10.1093/molbev/msu118/-/DC1
http://mbe.oxfordjournals.org/lookup/suppl/doi:10.1093/molbev/msu118/-/DC1
 Material
http://mbe.oxfordjournals.org/lookup/suppl/doi:10.1093/molbev/msu118/-/DC1
http://mbe.oxfordjournals.org/lookup/suppl/doi:10.1093/molbev/msu118/-/DC1
 Material
http://mbe.oxfordjournals.org/lookup/suppl/doi:10.1093/molbev/msu118/-/DC1
http://mbe.oxfordjournals.org/lookup/suppl/doi:10.1093/molbev/msu118/-/DC1
,
http://mbe.oxfordjournals.org/lookup/suppl/doi:10.1093/molbev/msu118/-/DC1
http://mbe.oxfordjournals.org/lookup/suppl/doi:10.1093/molbev/msu118/-/DC1
 Material
i.e.
http://mbe.oxfordjournals.org/lookup/suppl/doi:10.1093/molbev/msu118/-/DC1
http://mbe.oxfordjournals.org/lookup/suppl/doi:10.1093/molbev/msu118/-/DC1
 Material
http://mbe.oxfordjournals.org/lookup/suppl/doi:10.1093/molbev/msu118/-/DC1
http://mbe.oxfordjournals.org/lookup/suppl/doi:10.1093/molbev/msu118/-/DC1
 Material
http://mbe.oxfordjournals.org/lookup/suppl/doi:10.1093/molbev/msu118/-/DC1
http://mbe.oxfordjournals.org/lookup/suppl/doi:10.1093/molbev/msu118/-/DC1
 Material
http://mbe.oxfordjournals.org/lookup/suppl/doi:10.1093/molbev/msu118/-/DC1
http://mbe.oxfordjournals.org/lookup/suppl/doi:10.1093/molbev/msu118/-/DC1


Material online). Similarly, seven SNPs associated with height
were among those presenting the strongest signals of positive
selection in Europeans, five of which have been associated
with increased height. Likewise, four SNPs associated with
height were found to be under positive selection among
Africans and four among Asians (supplementary table S17,
Supplementary Material online). Finally, one SNP associated
with age at menarche was among the strongest signals of
positive selection in Europeans and three in Africans, all the
selected alleles being associated with an older age at menar-
che onset (supplementary table S18, Supplementary Material
online).

For disease-associated SNPs, several categories, such as
immune-related diseases and cancers, were overrepresented
in DIND outliers. Interestingly, for some of the GWAS-SNPs
associated with immune-related disorders, we observed a
clear directionality (e.g., risk or protection) of the selective
pressure, with most of the selected alleles increasing disease
risk (~70%, table 3; supplementary table S19, Supplementary

Material online). By contrast, no clear directionality of the
selection pressure was observed for GWAS-SNPs associ-
ated with other human diseases, including cancers (table 3;
supplementary table S19, Supplementary Material online) or
diet-related traits, such as fat metabolism and cholesterol
levels (supplementary table S20, Supplementary Material
online).

Discussion
The aim of this study was not to perform a hypothesis-gen-
erating genome-wide scan of selection using classical outlier
approaches. The overlap of outlier loci among existing studies
remains limited (Akey 2009), owing to the heterogeneity of
statistics used, threshold definitions of “outlier,” time frames
of the selective events recovered, and high false discovery
rates (FDRs) (Kelley et al. 2006; Teshima et al. 2006), empha-
sizing the need for studies that consider demography and
other selective models. Our aim here was instead to provide
a global assessment of the genome-wide prevalence of recent,

Table 2. Overlap of Extreme iHS and DIND Outlier Clustering, Calculated from the 1000G Pilot and Phase 1 and CG Data Sets, with Regions
Previously Found to Present Robust Signatures of Positive Selection.

Position Population Gene Voight et al.
(2006)a

Sabeti et al.
(2007)a

1000G Pilotb CGb 1000G Phase 1b

DIND
e-valuec

iHS
e-value

DIND
e-value

iHS
e-value

DIND
e-value

iHS
e-value

1q23.3-q24 ASN BLZF1, SLC19A2 LRH, iHS 1.0000 0.0262 0.0005 1.0000 0.0108 0.2367

1p31.3 ASN SLC44A5 iHS 0.0074 0.0441 0.0037 0.0932 0.0153 0.0898

1p34.3 EUR NCDN, TEKT2 iHS 0.1058 1.0000 1.0000 1.0000 0.0178 1.0000

2q13 ASN EDAR LRH, iHS, XP-EHH 0.0006 0.1026 0.0422 1.0000 0.0011 0.0013

2q21.3 ASN SULT1C cluster iHS 0.0019 0.0108 0.0011 0.1469 0.0006 0.0054

2q21.3-q22.1 EUR LCT iHS LRH, iHS, XP-EHH 0.0002 0.1205 0.0003 0.0172 0.0002 0.0046

2p23.3 AFR NCOA1, ADCY3 iHS 0.0203 0.0069 0.0169 0.0872 0.0054 0.0286

2q31.2 ASN PDE11A LRH, iHS, XP-EHH 0.0219 0.0714 0.0241 0.0009 0.0084 0.0291
EUR 0.0106 1.0000 0.0031 0.1755 0.0197 0.0806

4p13 ASN SLC30A9 LRH, iHS, XP-EHH 0.0052 0.0593 1.0000 1.0000 0.0000 0.0326

4q21-23 ASN ADH cluster iHS 0.0058 0.0735 0.0008 0.0859 0.0085 0.0395

8q11.21-23 AFR SNTG1 iHS 0.0021 0.0340 0.0291 0.0222 0.0011 0.0621
ASN iHS 0.0021 0.0003 0.0011 0.0421 0.0014 0.0308
EUR iHS 0.0011 0.0764 0.0199 0.0307 0.0026 0.0089

9p22.3 ASN C9orf93 iHS 1.0000 0.2567 1.0000 0.197 0.0572 0.0436

10q21.1 ASN PCDH15 LRH, iHS, XP-EHH 0.0171 0.0004 0.0163 0.0024 0.0024 0.0021

12q21.2 AFR SYT1 iHS 0.0008 0.0003 0.0036 0.0003 0.0017 0.0003

15q21.1 EUR SLC24A5d XP-EHH NA NA NA NA NA NA

15q22 ASN HERC1 XP-EHH 9e-05 0.1508 1.0000 1.0000 0.0001 0.0233

16q22.3-q23.1 AFR CHST5, ADAT1, KARS LRH,iHS 0.0535 1.0000 0.0159 0.0085 0.0278 0.0742
ASN 0.0997 1.0000 0.0284 0.0868 0.0815 0.0252

17q23 EUR BCAS3 XP-EHH 0.0057 0.0421 0.0032 0.0891 0.0267 0.0007

20cen AFR SPAG4 iHS 0.0137 0.0698 0.0444 0.2307 0.0131 0.0374
EUR iHS 0.0144 1.0000 0.0010 0.011 0.0069 0.0129

20cen ASN ITGB4BP, CEP2 iHS 1.0000 0.0792 1.0000 1.0000 1.0000 0.0385

22q12.3 AFR LARGE LRH 1.0000 1.0000 0.1153 0.0284 0.0395 0.0059

aEmpty cells correspond to regions not present in the list of the top selection targets in these studies.
bThe genes with at least one window showing extreme proportion of outliers are underlined (the windows are grouped into bins with similar numbers of SNPs, and the 1% most
extreme proportion of outliers are determined separately for each bin).
cThe e-value is based on the calculation of the proportion of outliers within sliding windows of 100 kb, centered on each SNP (outlier clustering). The e-value is the genome-wide
proportion of windows, with an outlier clustering greater than the maximum clustering value observed for the gene.
dFor SLC24A5, NA indicates that no SNP with a DAF over 0.2 was found in this gene. Note that the contiguous genes SLC12A1 and FBN1, which are located 80 kb and 250 kb
away from SLC24A5, respectively, were detected using the 1000G Pilot and Phase 1 data sets.
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strong positive selection as a mechanism of adaptive change
in humans. We found that the haplotype-based iHS and
DIND statistics are both powerful to detect hard sweeps, in
the context of WGS data sets and human demography, and
insensitive to background selection and other modes of se-
lection. By applying these statistics to WGS data sets, we
provide evidence of positive selection targeting specific func-
tional SNP classes, that is, enrichments of genic and nonsyn-
onymous SNPs among selection signals, and that such

selection signals are enriched in SNPs associated with pheno-
typic variation.

First, our simulation study showed that the haplotype-
based statistics iHS and DIND are powerful to detect selection
over a large range of allele frequencies. We also found that the
power of these statistics remained virtually unchanged when
simulating variation of mutation and recombination rate, and
that it is not affected by the reconstruction of gametic phases.
Notably, our simulation study demonstrated the almost total

FIG. 4. Examples of candidate genomic regions under positive selection in the 1000G Pilot data set. iHS and DIND were calculated for 100-kb windows.
Lines show the proportion of iHS (in green) and DIND (in blue) outliers by window. The dotted lines represent, for iHS and DIND, the threshold defining
the 1% most extreme proportions of outliers by window (100 kb). The orange dots are the DAFs. The gray rectangles show the position of the genes. (A)
LCT. Evidence of positive selection in the EUR population at locus 2q21, centered on SNP rs4988235, responsible for lactase persistence in adulthood
(red triangle). (B) EDAR. Evidence of positive selection in the ASN population at locus 2q13, around the SNP rs3827760, associated with hair morphology
(red triangle). (C) NNT. Evidence of positive selection in the AFR population at locus 5p12, implicated in familial glucocorticoid and cortisol deficiency,
and particularly around the SNPs rs10045029, rs7723874, and rs6862256, associated with NNT expression (red, dark blue, and magenta triangles,
respectively). (D) TLR5 region. Evidence of positive selection in the AFR population at locus 10q24, involved in the recognition of bacterial flagellin, and,
in particular, around SNP rs5744174, a nonsynonymous mutation (L616F) associated with lower levels of NF-kB signaling in response to flagellin (red
triangle).
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insensitivity of DIND to low coverage (as low as 3�). Indeed,
because the nucleotide diversity � is not particularly sensitive
to low-frequency variants DIND is particularly insensitive to
low coverage mainly affecting these low-frequency variants.
Furthermore, we showed that the power to detect hard
sweeps was greatest for the 1000G data set, because sample

size appeared to have a stronger effect on the power of iHS
and DIND than coverage variation. Indeed, the small sample
size of the CG data set was not compensated by its deep
coverage (~40�) for the detection of signals of strong ongo-
ing selective sweeps.

Second, echoing the simulation results, the analysis of the
WGS data sets showed that DIND performed better than iHS
in the context of small sample sizes, as shown for the CG data
set, and low coverage, as shown for the 1000G data set. In this
context, iHS failed to replicate the enrichment of genic SNPs
among outliers previously obtained with HapMap ((Voight
et al. 2006) and this study) and to detect well-known signals
of positive selection (Voight et al. 2006; Sabeti et al. 2007;
Pickrell et al. 2009). iHS is sensitive not only to low coverage
but also to genotype calling errors. Following the improve-
ment of data quality in the 1000G Phase 1 release, the ORC of
iHS increased and reached significance in Europeans (table 1),
and some of the strongest signals of selection, including LCT
and EDAR, were restored. In addition, the iHS signal-to-noise
ratio is lower in WGS data sets than in genotyping data sets,
because extended haplotypes are more rapidly broken in the
presence of low-frequency variants (Grossman et al. 2013).
That low-frequency variants are more common in WGS (1000
Genomes Project Consortium 2010) could explain the ab-
sence (or weakness) of enrichment in genic SNPs within
iHS outliers, while such enrichment has been observed in

FIG. 5. Enrichment in GWAS-SNPs among DIND outliers. DIND was
calculated for 100-kb windows (results for DIND calculated for 1-Mb
windows are available in supplementary table S13, Supplementary
Material online). GWAS-SNPs were filtered for P value lower than
10�7. A single entry was retained for each SNP-trait association, and
LD was accounted for (see Materials and Methods). (A) Proportion of
GWAS-SNPs that are DIND outliers. Bar plots show the proportion of
outliers among GWAS-SNPs for each data set and each population
(from left to right, AFR, EUR, ASN). The black dotted line indicates
the proportion of outliers among all the SNPs of the genome. (B)
Enrichments of GWAS-SNPs among DIND outliers. Relative enrichment
of GWAS-SNPs among DIND was measured using OR. The black dotted
line corresponds to an OR equal to 1. An OR equal to or smaller than 1
indicates no enrichment. An OR greater than 1 indicates enrichment of
GWAS-SNPs among DIND outliers (EUR in all data sets, and AFR in
1000G Pilot and Phase 1 data sets).

Table 3. Numbers of Selected Risk Alleles, Protection Alleles, and
Nonreported Effect Alleles for Diseases for Which DIND Outliers
Displayed Enrichment.

Disease categories Population Riska Protectionb NRc

Immune-related
diseases

ALL Countd 13 6 0
Percent 68.42% 31.58% 0.00%

AFR Countd 1 2 0
Percent 33.33% 66.67% 0.00%

EUR Countd 9 3 0
Percent 75.00% 25.00% 0.00%

ASN Countd 3 1 0
Percent 75.00% 25.00% 0.00%

Cancer ALL Countd 7 7 1
Percent 46.67% 46.67% 6.67%

AFR Countd 0 4 0
Percent 0.00% 100.00% 0.00%

EUR Countd 3 2 1
Percent 50.00% 33.33% 16.67%

ASN Countd 4 1 0
Percent 80.00% 20.00% 0.00%

Other diseases ALL Countd 6 8 6
Percent 30.00% 40.00% 30.00%

AFR Countd 2 2 1
Percent 40.00% 40.00% 20.00%

EUR Countd 2 4 3
Percent 22.22% 44.44% 33.33%

ASN Countd 2 2 2
Percent 33.33% 33.33% 33.33%

aThe selected allele (derived allele) is associated with a higher risk of developing
disease.
bThe selected allele (derived allele) is not the risk allele defined in the NHGRI GWAS
database.
cThe risk allele was not reported in the NHGRI GWAS database.
dCounts were obtained taking LD into account.
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genome-wide SNP data sets. This would not affect DIND, as �
is not particularly sensitive to low-frequency variants, consis-
tent with significant enrichments of genic SNPs among DIND
outliers only. Likewise, when simulating DNA sequence data
under selection, we observed a lower clustering of outliers for
iHS with respect to DIND. In addition, the breakdown of
extended haplotypes by low-frequency variants is exacer-
bated in genic regions, where a higher proportion of low-
frequency variants is observed (Abecasis et al. 2012), because
moderately deleterious mutations are maintained at low fre-
quency by negative selection (30–42% of human nonsynon-
ymous mutations are moderately deleterious, 0.01%< j s j
<1%, see (Boyko et al. 2008)). Accordingly, we obtained
lower ORC for Africans than for non-Africans with iHS, for
all data sets, as expected, given that negative selection is more
efficient in populations with large effective sizes.

The enrichments of genic and nonsynonymous SNPs
among DIND outliers, and its substantial power to detect
well-known signals of selection, provide an important
proof-of-concept of the detection of genuine positive selec-
tion events in WGS data sets. For example, we identified the
functionally validated selection signal at TLR5 in Africans
(Grossman et al. 2013) (fig. 4D; supplementary figs. S7–S11,
Supplementary Material online). TLR5 is an innate immunity
receptor involved in the recognition of bacterial flagellin, high-
lighting the importance of the selective pressures imposed by
pathogens during human evolution (Barreiro and Quintana-
Murci 2010; Quintana-Murci and Clark 2013). In addition,
several new signals are of particular interest because they
involved SNPs predicted to be functional by other studies
(supplementary tables S10–S12, Supplementary Material
online). For example, we detected a strong signal on chromo-
some 5p12 in the African population, for all WGS data sets
(fig. 4C; supplementary figs. S7–S11, Supplementary Material
online). The peak signal was located 150 kb downstream from
the NNT gene, and the SNPs with the highest DIND scores
have been associated with NNT expression (i.e., expression
quantitative trait loci, eQTLs) in Africans (P = 6.4� 10�8;
[Pickrell et al. 2010]). NNT has recently been implicated in
familial glucocorticoid deficiency, which triggers low cortisol
levels, hypoglycemia, and hyperpigmentation (Meimaridou
et al. 2012). Glucocorticoids are steroid hormones that me-
diate homeostatic responses to environmental stressors, and
these responses are known to vary among human popula-
tions (Maranville et al. 2011). Finally, among the strongest
selection signals in east Asians, three gene regions have
been linked to breast cancer. These include RAD51L1 and
the ECHDC1-RNF146 region identified by GWAS (Hoggart
et al. 2007; Gold et al. 2008), and HERC1, which has previously
been reported as a selection target and is mutated in breast
cancer (Grossman et al. 2013). These observations highlight
the need for further studies to better understand the extent
to which cancer, which is generally a rather late-onset disease,
has been a selective factor by itself or a by-product of other
selective forces exerting pressure on pleiotropic genes.

Further support to the adaptive significance of the geno-
mic regions enriched in selective signals came from the over-
lap with GWAS, providing new insight into the relationship

between past selection and benign and disease-related
phenotypic variation. We found global enrichments in
GWAS-SNPs among DIND outliers, supporting again the
notion that we may detect true selective events from WGS
data. Importantly, we were able to infer the phenotypic di-
rectionality of selective events in some cases. For example,
although it has been suggested that height-associated SNPs
are subject to polygenic adaptation by weak selection
(Turchin et al. 2012), we detected five SNPs associated with
this polygenic trait that displayed signatures of strong selec-
tion favoring high stature in European populations (supple-
mentary table S17, Supplementary Material online). Likewise,
we detected four SNPs in African and European samples for
which positive selection has favored a later onset of menarche
(supplementary table S18, Supplementary Material online). It
has been suggested that the increasing complexity of human
societies (e.g., the emergence of farming) has delayed psycho-
social maturity (Gluckman and Hanson 2006) and that the
occurrence of sexual maturity in psychosocially immature
females is detrimental. Our analyses suggest that selection
has acted to compensate for this trend by shifting sexual
maturity to older ages. Importantly, we also observed a
strong skew in selection, targeting alleles associated with a
higher risk of immune-related diseases. Our results further
support the hypothesis that the incidence of immune-related
disorders in modern societies may at least partly reflect the
consequences of past selection for stronger immune re-
sponses to combat infection (Barreiro and Quintana-Murci
2010; Raj et al. 2013).

More generally, our results must be seen in the context of
recent debates as to the prevalence of hard sweeps in the
human genome. Two recent studies have suggested that clas-
sic selective sweeps have been relatively rare during human
evolution (Hernandez et al. 2011; Granka et al. 2012) and that
most of these “sweeps” could be explained by the widespread
action of background selection (Hernandez et al. 2011). Here
we show that the two haplotype-based statistics used are
robust to background selection and underpowered for the
detection of positive selection events other than hard, or
nearly hard, sweeps. Our results should, therefore, highlight
only the occurrence of recent, strong positive selection.
However, although clearly significant, the ORs obtained
(ORC) in the enrichment analyses for functional SNP classes
were generally modest (1.2–1.5), supporting the notion that
the prevalence of such sweeps is moderate. For example, an
ORC of 1.25 indicates that no more than 20% of candidate
genes are true targets of positive selection. This observation
may explain the limited overlap of outlier loci among other
studies (Akey 2009), as well as between DIND and iHS in this
study. However, using the ORC of the 1000G Phase 1 data set,
we can roughly estimate the number of genes under selection
at approximately 70–100 in each of the different population
groups. However, these numbers may represent the lower
bound of genes under selection, given that the actual
power to detect selection is lower than 100% and that we
neglect the occurrence of selection in nongenic regions, for
example, overlap of iHS and eQTL signals (Kudaravalli et al.
2009). Taken together, our results indicate that recent, hard
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sweeps have played a moderate, but significant, role over the
last ~60,000 years of human evolution. Given that positive
selection regimes other than the hard sweep model, such as
polygenic adaptation by weak selection and selection on
standing variation, cannot be detected by our approach,
the degree of positive selection lato sensu acting on the
human genome is undoubtedly higher than suggested here
and in previous studies.

We conclude that low-coverage WGS data can be effi-
ciently used for the detection of selective sweeps, revealing
genes and functions accounting for adaptive phenotypic var-
iation in humans or other species. The development of meth-
ods that can be safely used in the context of low-coverage
data is of particular importance for the design of population
genetic studies, as the sequencing of many individuals at high
coverage remains costly. It is now time to refine analyses by
focusing on populations living in extreme environmental con-
ditions—high altitude, Artic climate, forest- or savannah-
based populations—or with different modes of subsistence.
Whole-genome sequencing of individuals from these popu-
lations, even at low coverage, should improve our under-
standing of the genetic basis of human adaptation to
specific environments.

Materials and Methods

Data

The low-coverage part of the 1000G Pilot Project consists of
data for samples from four populations: 59 unrelated Yoruba
from Ibadan, Nigeria (AFR), 60 unrelated Utah residents with
Western and Northern European ancestry (EUR), and 60
unrelated Asians (ASN), 30 Han Chinese from Beijing and
30 Japanese from Tokyo. All these samples were sequenced
at low mean coverage: 3.7� for the AFR panel, 5.1� for EUR
panel, and 2.8� for the ASN panel. In total, we analyzed
9,760,562 SNPs for AFR, 6,858,242 SNPs for EUR, and
5,674,252 SNPs for ASN. The ancestral state of each SNP
was retrieved from the 1000G Project website (ftp://ftp.
1000genomes.ebi.ac.uk/vol1/ftp/pilot_data/release/2010_03/
pilot1, last accessed April 9, 2014).

We evaluated the influence of genotype call quality by
incorporating into our analyses a subset of the Phase 1 data
of the 1000G Project, in which the quality of genotype calls
was significantly improved. For comparison purposes, we in-
cluded only individuals for whom data were already present
in the Pilot release. Our subset of the 1000G Phase 1 data set
consisted of 52 AFR, 45 EUR, and 58 ASN individuals (sup-
plementary table S6, Supplementary Material online). These
samples were sequenced at low mean coverage: 4.4� for the
AFR panel, 4.5� for EUR panel, and 4.3� for the ASN panel.
In total, we analyzed 12,848,493 SNPs for AFR, 7,577,087 SNPs
for EUR, and 7,161,377 SNPs for ASN. We rendered the Pilot
and Phase 1 data sets comparable, by removing the singletons
from the 1000G Phase 1 data set (supplementary fig. S5,
Supplementary Material online). The ancestral state of each
SNP was retrieved from the 1000G Project website (ftp://ftp.
ncbi.nih.gov/1000genomes/ftp/technical/working/20120316_

phase1_integrated_release_version2/, last accessed April 9,
2014).

We also studied the high-coverage data of the CG public
data set (software version 1.10.0.26). We selected samples
from nonadmixed populations only and pooled together
populations presenting close genetic affinities, to increase
sample size (supplementary table S6, Supplementary
Material online). We pooled together nine Yoruba from
Ibadan, Nigeria, and four Luhya from Webuye, Kenya, to
form a single panel of 13 unrelated Africans (AFR). We
pooled together nine Utah residents with northern and west-
ern European ancestry from the centre d’etude du polymor-
phisme humain (CEPH) collection and four individuals from
Tuscany, Italy, to form a single panel of 13 unrelated
Europeans (EUR). We pooled together four Han Chinese
from Beijing, China, and four Japanese from Tokyo, Japan,
to form a single panel of eight unrelated Asians (ASN). All
these samples were sequenced with a high mean coverage of
over 50�. We removed from the analysis all SNPs presenting
5% or more low-quality Illumina calls (i.e., calls with a map-
ping and assembly with qualities [MAQ] mapping quality
of 0). We also removed from the analysis the 11q region in
which we found an accumulation of Mendelian errors. In
total, we analyzed 10,070,271 SNPs for AFR, 6,281,785 SNPs
for EUR, and 5,065,417 SNPs for ASN. The ancestral states of
the SNPs were determined from the ancestral sequence pro-
vided by the 1000G Project and the genomes of five primates:
gorilla, chimpanzee, orangutan, macaque, and marmoset
(ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/technical/refer-
ence/, last accessed April 9, 2014).

A Realistic Human Demographic History

We aimed to simulate data under a realistic demographic
scenario that was tractable with the forward-in-time simula-
tion software SFS-CODE (Hernandez 2008). We determined
realistic values of key demographic parameters by comparing
observed data (i.e., 20 independent 1.33-kb noncoding regions
previously resequenced in 95 Africans, 60 Europeans, and 60
Asians, see Laval et al. [2010]), with simulations of various
demographic scenarios obtained with SFS-CODE, summariz-
ing each data set in terms of the mean and standard deviation
of several statistics (Tajima’s D, the number of segregating
sites S and FST) (supplementary text and table S1,
Supplementary Material online). We simulated a 1.33-kb
DNA fragment with � (� = 4N�, � is the per generation per
site mutation rate) and � (�= 4Nr, r is the per generation rate
of recombination between adjacent loci) equal to 0.001. We
simulated three populations mimicking the African, European
and Asian populations and tested several scenarios by varying
the age and strength of bottlenecks and expansions. For each
simulation, 95 individuals were sampled from the African
population, and 60 were sampled from each non-African
population (10,000 simulations for each scenario). We used
an ABC approach (Beaumont et al. 2002) to estimate the
posterior probability of each demographic model, as previ-
ously described (Laval et al. 2010) (supplementary text,
Supplementary Material online). We retained the
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demographic scenario with the highest posterior probability
in order to perform all subsequent simulations, that is, recent
selective sweep, background selection, interaction of recent
selective sweep, and background selection as well as the neu-
tral simulations that were used to determine the thresholds
applied to detect selection.

Consistent with the general model of human evolution
(Voight et al. 2005; Laval et al. 2010; Gravel et al. 2011), the
retained scenario consisted of an ancestral African population
of constant size (N = 10,000) that split into two populations
(African and non-African) 60,000 years ago (fig. 1A). An ex-
pansion resulted in an instantaneous 50 times increase in the
African population, 20,000 years ago. This time frame corre-
sponds to the mean of the times corresponding to the Bantu
expansions (Diamond and Bellwood 2003) and a more an-
cient expansion that may have occurred in Africa (e.g.,
~30,000 years ago [Voight et al. 2005; Laval et al. 2010]).
The bottleneck accompanying the out-of-Africa exodus
caused an instantaneous decrease in the ancestral non-
African population, which was halved. This population then
split again into two populations (European and Asian) 20,000
years ago. Finally, both these populations underwent an in-
stantaneous 100-fold expansion 6,000 years ago, correspond-
ing to the Neolithic expansion (Laval et al. 2010). The
migration rate (m) was set to 1.3� 10�5 and was fixed ac-
cording to what is commonly admitted concerning modern
human evolution. We minimized computation time by using
an ancestral effective size N = 100, although the effective pop-
ulation size for humans is generally considered to be
N = 10,000. Indeed, if it is desired to simulate over t genera-
tions a population with parameter values N, �, �, and s, then
a simulation using instead N/l, l�, l�, and ls, evolved for t/l
generations, for some l> 1, will generate approximately the
desired AFS and patterns of LD (Hoggart et al. 2007).
Consequently, the AFS simulated using SFS-CODE are not
affected by the simulated population size (Hernandez 2008)
(see also the SFS-CODE documentation). In addition, we
tested the effect of this scaling on the power of statistics
based on the levels of LD surrounding a positively selected
allele such as iHS and found no effect (data not shown).

Simulating Full Sequence Data

We used SFS-CODE to simulate DNA regions according to the
demographic model, mutation, and recombination rates de-
scribed above. We used this calibrated demographic model to
perform all subsequent simulations, that is, all neutral simu-
lations as well as those under the various models of selection
investigated. For each simulation, 59 individuals were sampled
from the African population and 60 from one of the two non-
African populations, for matching with the 1000G Pilot sam-
ples (largest number of sampled individuals for the data sets
analyzed). We first simulated neutrally evolving DNA regions
and positive selection models, assuming the hard sweep
model (Pritchard et al. 2010). A new advantageous mutation
with a population genetics selection parameter 2Ns was in-
serted into the middle of the sequence, at a frequency of 1/
2N, in a specific population, at a specific time t. We simulated

100-kb DNA regions with 2Ns equal to 100, a combination of
parameters, that is, length of DNA region and strength of
selection, which was previously used to consistently estimate
the power to detect recent positive selection in humans
(Voight et al. 2006; Barreiro et al. 2009). The time t was
drawn from a range of recent values (7,500; 10,000; 15,000;
20,000; 25,000; 37,500; 50,000) to obtain a large range of SAF
(0� SAF� 1) values, covering the frequency spectrum from
0 to 1.

We then simulated background selection. We assumed
that 20% of the mutations of each 100-kb region were neg-
atively selected, and we explored a wide range of 2Ns ranging
from �500 to �1. We also simulated models of interaction
between positive and background selection. To do so, a new
advantageous mutation (2Ns = 100) was inserted (frequency
of 1/2N), in a specific population at a specific time t (same
range of recent values as above), into the middle of a se-
quence, where 20% of sites were set as negatively selected
with identical 2Ns values. We explored various 2Ns values
including 2Ns =�1, 2Ns =�100, and 2Ns =�500.

We also aimed to simulate scenarios of positive selection
on standing variation. Unfortunately, to our knowledge, it is
not possible to simulate positive selection on standing varia-
tion with SFS-CODE. We therefore used mpop (Pickrell et al.
2009) for forward simulations, assuming a population of con-
stant effective size (2N = 1,000 chromosomes). Indeed, mpop
can simulate positive selection on standing variation only for
populations of constant size. We set the per locus mutation
rate (� = 4N�) and the rate of recombination between adja-
cent loci (�= 4Nr) to 0.001, as in previous studies. We simu-
lated standing variation scenarios by adding a selective
advantage of s = 0.1 (2Ns = 100) to a previously neutral
allele of frequency 0.01, 0.05, 0.1, 0.2, 0.3, 0.4, or 0.5.

Simulating Next-Generation Sequencing Data

To simulate low-coverage data, we used the short-read sim-
ulator ShotGun (Kang et al. 2013). It allowed us to simulate
100-bp reads, with realistic read depth distribution following a
negative binomial distribution, which is a Gamma mixture of
Poisson. Indeed, the read depth distribution is known to
follow a Poisson distribution, but stochastic and experimental
limitations result in overdispersed read depths across bases.
The level of overdispersion is controlled by a shape parameter
set to be equal to 4 (Kang et al. 2013). The sequencing error
rate specified was set to 0.001 (Shendure and Ji 2008). In order
to simulate the SNP calling step, we used Thunder (Li et al.
2011), which takes into account the LD information to call
genotypes. Thunder is an extension of MaCH, the genotype
imputation and phase reconstruction software (Li et al. 2010).
We simulated an average coverage of 4� for the African
individuals, 5� for the European individuals, and 3� for
the Asian individuals by using negative binomial distributions
with means of 4, 5, and 3. These values correspond to the per
individual average coverage calculated for the AFR, EUR, and
ASN samples of the 1000G Pilot data set. The lower and upper
bounds of the 99% confidence intervals are equal to 0–14 in
Africa, 1–17 in Europe, and 0–11 in Asia. After simulating
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coverage and SNP calling steps, we then removed every sin-
gleton, as observed in the 1000G data set. In addition, for each
of these simulated data sets, we reconstructed the gametic
phase of each individual using Thunder/MaCH and SHAPEIT
(Delaneau et al. 2012), without the use of genealogical
information.

We simulated small sample sizes by randomly drawing
individuals from the simulations under both neutrality and
positive selection described above. We randomly drew 13
individuals from the African and one of the non-African pop-
ulations and eight from the other non-African population, for
matching to CG data.

Statistics

To detect mutations targeted by recent positive selection, we
used the haplotype-based statistics iHS and DIND (Voight
et al. 2006; Barreiro et al. 2009), which are population- and
SNP-specific. They were designed to directly detect mutations
targeted by recent positive selection, in contrast with other
approaches (e.g., AFS-based statistics, such as Tajima’s D) that
cannot identify the local target of selection because they are
calculated over a given region. In addition, iHS was designed
to determine whether the ancestral or derived allelic state of
each mutation has been targeted by recent positive selection,
whereas DIND detects positive selection on the derived allele
only. Both methods are based on the same principle: the
comparison of haplotypes carrying the ancestral allele with
haplotypes carrying the derived allele of a given SNP.

The iHS statistic is therefore calculated when the ancestral
and derived allelic states are known unambiguously. This sta-
tistic is based on extended haplotype homozygosity (EHH)
(Sabeti et al. 2002), a statistic assessing the identity of haplo-
types carrying the ancestral or derived alleles of a given SNP
over increasing distances. It is based on the rationale that an
allele targeted by strong positive selection increases in fre-
quency much more rapidly than a neutral allele, therefore,
displaying high levels of haplotype homozygosity over much
greater distances than would be expected under neutrality
(indeed, the neighboring region accumulates much less re-
combination). More specifically, the iHS is based on the inte-
gral of the observed decay of EHH (summed in both
directions away from the core SNP until EHH reaches 0.05)
denoted iHH. The iHS statistic is calculated as follows:

iHS ¼
ln iHHA

iHHD

� �
� Ep ln iHHA

iHHD

� �� �

SDp ln iHHA

iHHD

� �� �

with iHHA and iHHD being the iHH calculated with haplo-
types carrying the ancestral and derived alleles, respectively; Ep

and SDp are the expectation and standard deviation esti-
mated from the empirical distribution for SNPs with a DAF
p matching the frequency at the core SNP. Consequently, an
extremely negative value of iHS denotes positive selection on
the derived allele (iHHD> iHHA), whereas a highly positive
iHS indicates positive selection on the ancestral allele
(iHHA> iHHD).

The DIND is also calculated for unambiguously known
ancestral and derived allelic states. This statistic is based on
nucleotide diversity (�), which is used to measure the genetic
diversity of haplotypes carrying the ancestral or derived allele
of a given SNP. It is based on the rationale that alleles targeted
by strong positive selection increase in frequency more rap-
idly than neutral alleles and therefore tend to have a lower
nucleotide diversity than would be expected under a hypoth-
esis of neutrality (indeed, the neighboring region accumulates
fewer mutations). More specifically, DIND is the ratio �A/�D,
with �A and �D being the haplotype diversity calculated with
haplotypes carrying the ancestral and derived alleles, respec-
tively. The DIND statistic is calculated as follows:

DIND ¼
�A

�D
¼

PnA�1

i¼1

PnA

j¼i + 1
dij

C2
nAPnD�1

k¼1

PnD

l¼k + 1
dkl

C2
nD

with nA and nD being the number of ancestral and derived
alleles, respectively, dij being the number of differences be-
tween two haplotypes i and j carrying the ancestral allele, and
dkl being the number of differences between two haplotypes k
and l carrying the derived allele. Consequently, very high
values of DIND indicate the occurrence of positive selection
on the derived allele: that is, �D << �A. Note that DIND was
initially designed to capture selection targeting the derived
allele but can easily be extended to detect positive selection
targeting ancestral alleles. These two statistics require individ-
ual gametic phases (the effect on the power of these statistics
of the phasing procedure used was evaluated, see Results).

Phasing the Data

As described above, the iHS and DIND statistics are based
on haplotypic information and must therefore be calculated
for individual gametic phases. For the low-coverage
part of the 1000G data set (Pilot and Phase 1 releases),
phased data were obtained from the MaCH website
(Center for Statistical Genetics, University of Michigan,
http://www.sph.umich.edu/csg/abecasis/MACH/download/
1000G-2010-06.html (last accessed April 9, 2014) for the Pilot,
and http://www.sph.umich.edu/csg/abecasis/MACH/down-
load/1000G.2012-02-14.html (last accessed April 9, 2014) for
the Phase 1 release). The phasing procedure imputed all miss-
ing genotypes, which were found at SNPs presenting 20% or
more low-quality Illumina calls (i.e., calls with MAQ mapping
quality of 0). For CG public data, the phased data were in-
ferred with SHAPEIT, by merging populations (Delaneau et al.
2012). The phasing process was improved by the use of the
Yoruba from Ibadan, Nigeria (YRI) trio to phase the AFR, and
of 13 members of the same family (pedigree) to phase the
EUR. Only the founders of AFR and EUR families were re-
tained for positive selection analyses.

Power of iHS and DIND

The power was evaluated on 100-kb regions by simulations,
assuming the demographic model described above. For each
statistics, critical values were determined separately for each
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population, by neutral simulations (no selected site included
in the 100-kb regions), to obtain an FPR of 1%. We calculated
iHS and DIND for each mutation of the 100-kb region. As the
variance and mean of the DIND statistic depend on the DAF,
the values of DIND can only be compared for SNPs with
similar DAF values. We therefore determined the extreme
values of DIND from bins of DAFs. We grouped mutations
by DAF bin (from 0 to 1, in increments of 0.025) and extracted
the top 1% of DIND values for each bin. We normalized iHS by
DAF bin (see equation above). For the sake of comparison, we
used exactly the same procedure as for DIND. We grouped
mutations by DAF bin (from 0 to 1, in increments of 0.025)
and extracted the top 1% of absolute iHS values for each bin.
In accordance with a previous study (Voight et al. 2006), we
evaluated power on the basis of the proportion of extreme
iHS or DIND values in each window. We determined the
critical values defining 1% of the 100-kb regions with the
highest proportion of extreme iHS or DIND values in 104

neutral simulations (equivalent to an FPR of 1%) for each
simulated population. The power of each test to detect se-
lection (i.e., either background selection or various regimes of
positive selection) was then calculated as the proportion of
simulations under selection effectively detected by this pro-
cedure (i.e., the percentage of simulations presenting propor-
tions of extreme iHS or DIND values above the threshold
defined for an FDR of 1%).

Genome-Wide Calculation of iHS and DIND and
Identification of Outliers

To calculate iHS and DIND for each SNP of the WGS data sets
analyzed, we first determined the ancestral and derived state
of each mutation (see above). However, as these statistics are
extremely sensitive to the misspecification of derived states,
we calculated iHS and DIND only when the derived state was
determined unambiguously. If the regions in which iHS and
DIND were calculated overlapped with long gaps (>200 kb),
the resulting statistics were excluded from the analysis. We
carried out these calculations for 86.67%, 87.8%, and 90.71% of
the mutations of the 1000G Pilot, 1000G Phase 1, and the CG
data sets, respectively. Because the power of the iHS and
DIND was estimated from sets of simulations over 100-kb
regions, we calculated iHS and DIND over the same genomic
regions of 100 kb surrounding each mutation. This ensures
that we obtain values of the two statistics on strictly equiv-
alent regions, in terms of the recombination rate, coverage,
and AFS of mutations for each core SNP. We also calculated
iHS and DIND over genomic regions of 1 Mb surrounding
each mutation, to assess the sensitivity of our results to
window size. Indeed, DIND uses information from the haplo-
type diversity over the entire window considered, while iHS
may use information from only a part of the region concerned
(i.e., iHH is computed only when EHH> 0.05, over a region
whose length is mainly dependent on the intensity of selec-
tion). As previously described (Voight et al. 2006), we then
extracted the 1% most extreme iHS and DIND values by using
bins of DAFs (from 0 to 1, in increments of 0.025) and con-
sidered these extreme values (outliers) as potential targets of

positive selection. For the identification of regions under pos-
itive selection, we focused on the degree of clustering of out-
liers (Voight et al. 2006). We quantified signal strength by
determining the proportion of outliers recorded per 100-kb
window. We binned the windows by SNP density and con-
sidered the 1% of windows with the highest proportion of
outliers in each bin to be potentially under positive selection.

Enrichment in SNP Functional Classes and
Resampling Method

We calculated the enrichment of genic and nonsynonymous
SNPs among iHS and DIND outliers, by logistic regression,
controlling for the genomic variation of certain confounding
factors (Kudaravalli et al. 2009). These potential confounding
factors include the coverage observed in the region surround-
ing an SNP (e.g., the power to detect positive selection is lower
in regions with low coverage, see Results), recombination rate
(Voight et al. 2006), and SNP density. We therefore retrieved
these items of information for each window. The recombina-
tion rate was determined from HapMap recombination maps
build 36 for the 1000G Pilot data set and HapMap recombi-
nation maps build 37 for the CG and 1000G Phase 1 data sets.
We calculated the enrichment in genic and nonsynonymous
SNPs from the logistic model as follows:

Logit I genic ¼ 1ð Þ½ � ¼ �1I TESTo ¼ 1ð Þ

+
�
�2Cov +�3Rec +�4NbSNP

+�5Cov � Rec +�6Rec � NbSNP

+�7NbSNP � Cov�+ ",

with I(genic = 1) being an indicator function equal to 1 if the
SNP is located in a genic (nonsynonymous) region and equal
to 0 otherwise, I(TESTo = 1) being an indicator function equal
to 1 if the SNP shows a signal of selection (i.e., is an outlier)
and equal to 0 otherwise, Rec being the mean recombination
rate calculated in cM/bp, Cov being the mean coverage, and
nbSNP being the number of SNPs in the window. The OR,
which measures the relative enrichment of genic (nonsynon-
ymous) SNPs among SNPs with selection signals (outliers),
was estimated by exp(�1), defined as follows:

OR ¼
P genic j SELð Þ

P nongenic j SELð Þ

� �
P nongenic j not SELð Þ

P genic j not SELð Þ

� �

with SEL being “with selection signal,” that is with a significant
result in tests for selection (TESTo = 1). The OR estimated
from a logistic regression model incorporating all confound-
ing factors and the interaction terms (see equation above) is
denoted by ORC. The odds ratio is denoted OR for logistic
regression models not taking the confounding factors into
account.

The P values associated with enrichment were obtained
from 10,000 independent resamplings, taking into account
the LD between SNPs, a source of noise that can increase
the frequency of outliers in a given window. For each resam-
pling, we drew nonoverlapping regions of 500 consecutive
SNPs and arbitrarily assigned them to the genic class until
we reached the number of genic SNPs observed in each
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population. We considered the remaining SNPs to be non-
genic and calculated the OR for each resampling. To resample
nonsynonymous SNPs, we first determined the distribution of
the number of nonsynonymous SNPs per windows of 500
SNPs. We next drew nonoverlapping regions of 500 consec-
utive SNPs, and randomly assigned a number of SNPs to the
nonsynonymous class so as to fit the real distribution, until
we reached the number of nonsynonymous SNPs in each
population. Considering the remaining SNPs to be nongenic,
we calculated the OR for each resampling. For the calculation
of the P values for ORC, we first applied a linear regression to
the iHS and DIND values, taking into account the same con-
founding factors.

STAT ¼ C +�1Cov +�2Rec +�3NbSNP +�4Cov � Rec

+�5Rec � NbSNP +�6NbSNP � Cov + "

We then used the residual values (") to extract the outliers,
before applying the resampling method.

GeneTrail and GWAS Analysis

We used the GeneTrail online tool (http://genetrail.bioinf.uni-
sb.de, last accessed April 9, 2014) to analyze the enrichment of
some GO biological functions (Ashburner et al. 2000) among
DIND outliers. This made it possible to analyze the overrep-
resentation of each GO category among the outliers by com-
paring our sets of genes under positive selection with the
human reference gene set. An FDR adjustment was applied
to correct for multiple testing, and the significance threshold
was fixed at 0.05.

The National Human Genome Research Institute (NHGRI)
database (http://www.genome.gov/gwastudies/, last accessed
April 9, 2014) summarizes results from all published genome-
wide association (GWA) analyses for which the P values are
below 1.0� 10�5 (Hindorff et al. 2009). We first filtered the
database to remove associated SNPs for which P values were
greater than 1.0� 10�7, retaining a single entry for each SNP-
trait association. We then calculated the proportion of
GWAS-SNPs among DIND outliers by accounting for LD.
To this end, all the SNPs associated with the same trait or
disease and with the same outlier/nonoutlier status in a genic
region were counted as one association. These genic regions
were determined with the “mapped gene” field of the data-
base. We then compared these results with those expected
under neutrality (0.01 vs. 0.99). ORs were calculated for all
associated SNPs together and by trait and disease category.

Supplementary Material
Supplementary text, supplementary figures S1–S11, and
tables S1–S20 are available at Molecular Biology and
Evolution online (http://www.mbe.oxfordjournals.org/).
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