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Genomic Signatures of Selective Pressures
and Introgression from Archaic Hominins
at Human Innate Immunity Genes

Matthieu Deschamps,1,2,3 Guillaume Laval,1,2 Maud Fagny,1,2,3 Yuval Itan,4 Laurent Abel,4,5,6

Jean-Laurent Casanova,4,5,6,7,8 Etienne Patin,1,2 and Lluis Quintana-Murci1,2,*

Human genes governing innate immunity provide a valuable tool for the study of the selective pressure imposed by microorganisms on

host genomes. A comprehensive, genome-wide study of how selective constraints and adaptations have driven the evolution of innate

immunity genes is missing. Using full-genome sequence variation from the 1000 Genomes Project, we first show that innate immunity

genes have globally evolved under stronger purifying selection than the remainder of protein-coding genes.We identify a gene set under

the strongest selective constraints, mutations in which are likely to predispose individuals to life-threatening disease, as illustrated by

STAT1 and TRAF3. We then evaluate the occurrence of local adaptation and detect 57 high-scoring signals of positive selection at innate

immunity genes, variation in which has been associated with susceptibility to common infectious or autoimmune diseases. Further-

more, we show that most adaptations targeting coding variation have occurred in the last 6,000–13,000 years, the period at which pop-

ulations shifted from hunting and gathering to farming. Finally, we show that innate immunity genes present higher Neandertal intro-

gression than the remainder of the coding genome. Notably, among the genes presenting the highest Neandertal ancestry, we find the

TLR6-TLR1-TLR10 cluster, which also contains functional adaptive variation in Europeans. This study identifies highly constrained

genes that fulfill essential, non-redundant functions in host survival and reveals others that are more permissive to change—containing

variation acquired from archaic hominins or adaptive variants in specific populations—improving our understanding of the relative bio-

logical importance of innate immunity pathways in natural conditions.
Introduction

The burden of infectious diseases has been massive

throughout human history, particularly before the advent

of hygiene, vaccines, antiseptics, and antibiotics, when

human populations were ravaged by illnesses that resulted

in high childhood mortality and short life expectancy.1 In

light of this, and given that the human genetic makeup

strongly influences an individual’s susceptibility to infec-

tious disease and the resulting clinical outcome,2,3 natural

selection imposed by pathogens is expected to have pro-

foundly affected the patterns of variability of the human

genome.4–7 Indeed, interspecies analyses and within-

species studies in humans have established that purifying

and positive selection have been pervasive among both

genes and functions related to immunity and host de-

fense.5,8–14 Furthermore, pathogen pressure is increasingly

recognized as the underlying cause of such selection signa-

tures, with many immunity-related genes presenting pat-

terns of variation that strongly correlate with pathogen

diversity.15

Over recent decades, the dissection of the form and in-

tensity of selection in the human genome has established

the value of population genetics as a complement to clin-

ical and epidemiological genetic studies, in delineating

the biological relevance of immunity genes in natura and
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in predicting their involvement in disease.2,4,7,16 Genes

evolving under strong purifying selection are predicted to

include those involved in essential mechanisms of host

defense, variation in which should lead to severe disor-

ders.16 This prediction is supported by genome-wide

data, because Mendelian disease genes are enriched in sig-

nals of purifying selection.8,9,17 Conversely, genes evolving

adaptively—through positive or balancing selection (e.g.,

HBB [MIM: 141900], DARC [MIM: 613665], FUT2 [MIM:

182100], the HLA locus genes, ABO blood group genes,

and TRIM5 [MIM: 608487])—are usually more permissive

to functional variation, which can exert a protective effect

against infections.2,4,7,18 These signals of adaptive evolu-

tion in immune-related genes, tending to be recent and

population specific, further emphasize the important role

of pathogens in local adaptation.

Besides the occurrence of novel mutations, functional

variants transmitted through admixture represent another

potential source of adaptive variation. Recent data

provided evidence that 1%–6% of modern Eurasian ge-

nomes were inherited from ancient hominins, such as

Neandertals or Denisovans,19–21 with specific genomic re-

gions presenting up to 64% of Neandertal ancestry.22 In

the context of immunity, there is increasing evidence to

suggest that modern humans have acquired advantageous

variation through admixture with ancient hominins, as
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documented by candidate gene approaches for HLA class I

genes, STAT2 (MIM: 600556), or the OAS gene cluster

(MIM: 164350, 603350).23–25

Among the two arms that form the immune system,

innate immunity constitutes the front line of host defense

and provides a valuable model for the study of the selective

pressure imposed by microorganisms—pathogenic and

symbiotic—on host genomes.2,26 Innate immunity relies

on receptors that sense conserved microbial patterns or

molecules and activate signaling pathways that involve

the coordinated action of an array of downstream mole-

cules, including adaptors, regulators, transcription factors,

and effector molecules, all of which are required for the

eradication of pathogens and to maintain homeostasis.27

Importantly, unlike adaptive immunity whose parameter

variation is mostly somatic and presents limited heritabil-

ity, variation of innate immunity is germline encoded and

thus needs to be best-adapted to ensure host survival.28,29

Population genetic studies have shown that the impact of

selection on some families of innate immune receptors and

downstream signaling molecules (e.g., Toll-like receptors,

interferons, or antimicrobial peptides) varies consider-

ably,14,30–43 helping to delineate the relative functional

importance of different immune pathways.2,26 However,

these studies have focused on specific candidate genes or

gene families. A comprehensive, genome-wide view of

how selection has driven the evolution of innate immu-

nity in humans is thus missing.

Here, we took advantage of population whole-genome

sequence data to increase our understanding of the degree

of essentiality and adaptability of the different genes gov-

erning innate immunity and thus, to provide novel in-

sights into their respective biological relevance in host sur-

vival. To do so, we first created a hand-curated list of more

than 1,500 genes belonging to the different modules

constituting the innate immune system in humans (Mate-

rial and Methods). We then analyzed their patterns of pop-

ulation genetic variability, which we compared to the

remainder of the genome, using the 1000 Genomes Project

dataset,44 allowing us to evaluate the occurrence and in-

tensity of constraint and adaptation to geographic and

environmental pressures with an unprecedented level of

resolution. Finally, we estimated the time range at which

the bulk of genetic adaptation involving innate immunity

has occurred and evaluated the extent to which human

populations have acquired innate immunity genetic varia-

tion through admixture with Neandertals.
Material and Methods

Hand-Curated List of Innate Immunity Genes
We created a hand-curated list of innate immunity genes (IIGs) by

combining two public databases, Gene Ontology (GO)45 and

InnateDB,46 as well as by incorporating missing entries. Specif-

ically, we used the GO term ‘‘innate immune response’’ (GO:

0045087) to extract 1,309 entries corresponding to 884 unique an-

notations (last access January 2015). We removed all non-human
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taxon entries, non-SwissProt reviewed proteins, entries without

gene symbol or not approved by the HUGO Gene Nomenclature

Committee, as well as those encoding for HLA proteins and immu-

noglobulins. This yielded a final set of 806 GO genes. For

InnateDB, we retrieved 2,158 entries, corresponding to 989

unique annotations (last access January 2015). Similarly to GO,

we removed entries without approved HUGO names, HLA genes,

and miRNAs, and obtained a final set of 905 InnateDB genes.

When manually reviewing these two gene lists, we noticed the

presence of proteins belonging, based on structural homology, to

gene families that are commonly accepted to play a role in innate

immune processes (e.g., Nod-like receptors), even if the involve-

ment of some of their individual members in innate immunity re-

mains unclear. Because GO and InnateDB did not systematically

use this ‘‘family-based criteria,’’ we manually did so for gene fam-

ilies in which some of their individual members were missing

(e.g., we added 28 TRIM proteins and 24 C-type lectins). In addi-

tion, we noticed the absence of several well-described or recently

identified molecules, including some nucleic acid sensors such as

ABCF1 (MIM: 603429), DHX15 (MIM: 603403), DHX33 (MIM:

614405), and PYHIN1 (MIM: 612677). By applying these inclusion

criteria, we also retrieved some of the filteredGO and InnateDB en-

tries that were initially removed because they were present under a

non-approvedHUGO symbol. This was the case for the interferons

IFNL1 (MIM: 607403), IFNL2 (MIM: 607401), and IFNL3

(MIM: 607402), which were annotated in InnateDB as IL29,

IL28A, and IL28B, respectively. We acknowledge that some mole-

cules that we manually added (which were absent from the lists

that were downloaded from the databases at the time of the study)

have now been included in the corresponding websites. Our

manual inclusion of additional genes, based on current knowledge

of gene families and functions related to innate immunity (e.g.,

missing chemokines, defensins, and caspases; see Table S1), was

an attempt to update existing databases. Overall, we manually

added a set of 187 genes, making a final dataset of 1,553 genes

that constituted the basis of all subsequent analyses (Table S1).

We classified the 1,553 genes according to their main known

(or inferred) function into nine different categories. These include

sensors (n ¼ 274), adaptors (n ¼ 46), signal transducers (n ¼ 245),

transcription factors (n ¼ 93), effector molecules (n ¼ 284), and

secondary receptors (n ¼ 70). We also included regulators of the

signaling pathways (n ¼ 310) and accessory molecules (n ¼ 68)

necessary for an efficient immune response. This classification

was based on the functional information available for each of

these genes in InnateDB, UniProt, and/or the corresponding pub-

lications. Out of the 1,553 genes, 163 remained unclassified,

because their reported molecular description did not allow us to

include them in any of the categories above and were thus group-

ed into a final category termed as ‘‘uncharacterized.’’
Whole-Genome Sequence Datasets
Depending on the nature of the analyses performed, we used the

high-coverage (~573) exome sequencing data and/or the low-

coverage (2–63) sequencing data of the 1000 Genomes Project,

which are available for 1,092 individuals from 14 populations

from Europe, East Asia, sub-Saharan Africa, and the Americas.44
Assessing the Action of Purifying Selection
Quantification of the Extent of Purifying Selection

To estimate the strength of purifying selection, we used SnIPRE,47

which relies on the comparison of polymorphism and divergence



at synonymous and non-synonymous sites (i.e., McDonald-Kreit-

man contingency table). This method uses a generalized linear

mixed model to model the genome-wide variability among cate-

gories of mutations and estimates two population genetics param-

eters for each gene: g, the population selection coefficient, and f,

the proportion of non-synonymousmutations that are not delete-

rious. We focused our analyses on f, to quantify the strength of

purifying selection: a low f value indicates that a large proportion

of non-synonymous alleles were deleterious and have been

removed from the population. We retrieved the alignment of the

human genome (hg19 release) and the chimpanzee genome (Pan-

Tro3 release), used as an outgroup, provided by the UCSCGenome

Browser, corresponding to ~2.5 Gb of aligned sequences. All re-

gions of the human genome that are deleted or have no homology

with the chimpanzee were excluded from the analysis.

We identified 33.5 million single bases that were different be-

tween the two species, which were then functionally annotated

with SnpEff,48 using the GRCh37.65 build. We obtained 200,676

non-synonymous or synonymous divergent differences between

humans and chimpanzees. We next retrieved all human variants

that have been identified by the 1000 Genomes Project high-

coverage exome dataset.We kept 445,401 variants that were anno-

tated as non-synonymous or synonymous, were outside of gaps in

the human-chimpanzee alignment, and were polymorphic in at

least one human population. Variants with a fixed alternate allele

in the 1000 Genomes Project dataset (i.e., reference allele is absent

from the sample) were added to fixed differences between human

and chimpanzee. We excluded from human-chimpanzee fixed dif-

ferences 16,345 positions that were actually polymorphic in hu-

mans or chimpanzees, using the dbSNP136 chimpanzee database.

We retrieved all human CDS with length >68 bp and considered

the longest transcript available for each gene. We deduced from

the genetic code the number of synonymous and non-synony-

mous sites in the 22,571 transcripts obtained, accounting for

gaps in the human-chimpanzee alignments. Finally, we excluded

all transcripts that had a length <50 bp after accounting for these

gaps, had no divergent nor polymorphic mutations, had no

HUGO-approved gene symbol, or was not a SwissProt ‘‘reviewed’’

protein. HGNC-approved gene symbols were retrieved with the R

BioConductor biomaRt package (v.2.22.0), and SwissProt protein

status were retrieved with the R BioConductor UniProt.ws package

(v.2.6.2). SnIPRE47 was then used to estimate the f parameter for

17,967 genes, which included a final set of 1,492 IIGs, assuming

human and chimpanzee sample sizes of 1,092 and 10,

respectively.

Statistical Analyses

We estimated the enrichments of IIGs among genes evolving un-

der purifying selection by measuring the odds ratios (OR) of pur-

ifying selection. This OR measures the relative proportion of

IIGs among genes with purifying selection signals and is defined

as follows:

OR ¼
"
PðIIG j SELÞ
P
�
IIG j SEL�

#"
P
�
IIG j SEL�

P
�
IIG j SEL�

#
;

with IIG and IIG denoting genes being or not innate immunity

genes, respectively, SEL and SEL being ‘‘with’’ and ‘‘without purify-

ing selection signals,’’ respectively. If purifying selection preferen-

tially targets IIGs, we expect proportionally more IIGs in the tail of

the f distribution (OR> 1). Otherwise, we expect the same amount

of IIGs in the tail of the f distribution as in the remainder of

the genome (OR z 1). Note that all statistical tests comparing f
The
distributions among gene classes (e.g., IIGs against the rest of hu-

man genes) were performed (1) assuming statistical independence

between genes (i.e., very weak correlation between f values of

neighboring genes, R2 ¼ 0.016384) and (2) correcting by any po-

tential differences in the distributions of gene length and number

of SNPs per gene observed among classes. Because the f value is

potentially dependent on gene length and/or the number of

SNPs per gene, we corrected for these potential confounders by

performing 105 resamplings where these distributions (gene

length and number of SNPs per gene) were matched between

the tested class (e.g., IIGs) and every resampled set of genes.

Prediction of the Functional Impact of Mutations

To evaluate the fitness status of variants at IIGs, we used the Com-

bined Annotation Dependent Depletion (CADD) algorithm.49 We

downloaded the PHRED-scaled C-score calculation for the

39,701,210 variants (SNPs and indels) from the 1000 Genomes

Project and filtered out mutations that were excluded from the an-

alyses of purifying selection. We then compared the number of

SNPs in IIGs (33,867) and in the remainder of protein-coding se-

quences (399,784) having a PHRED-scaled scoreR 15. We consid-

ered this value as the limit above which mutations are probably

damaging, because this score corresponds to the median value

for all possible canonical splice site changes and non-synonymous

variants.49

Selective Constraints on Genes Associated with Primary Immunodefi-

ciencies

To assess to degree of purifying selection on IIGs associated with

primary immunodeficiencies (PID), we retrieved all known PID

genes from the database compiled by the Expert Committee of

the International Union of Immunological Societies50 and identi-

fied those corresponding to IIGs.We compared the distributions of

f values between the 1,373 non-PID-associated IIGs and the 119

PID-associated IIGs for which the f parameter was available,

considering their mode of inheritance. We considered only genes

for which the mode of inheritance was autosomal dominant (AD)

or autosomal recessive (AR) in a given subgroup of PIDs. Genes

associated to an AD form in a subgroup of PID and to an AR

form in another subgroup of PID were included in both AD and

AR categories.

Protein-Protein Interaction Network Analysis

We reconstructed the protein-protein interaction network by

retrieving the interactions from the BioGRID database

v.3.2.105.51 We retrieved protein Ensembl IDs via BioMart and

considered only non-redundant direct physical interactions to

compute degree centrality with the NetworkAnalyzer plugin52

in Cytoscape.53 Ubiquitin C and amyloid precursor protein

were removed from further analysis because they display outlier

degree centralities. We transformed the degree centrality to

log10(1þdegree centrality) to reduce the skewness of the distribu-

tion and used a Pearson correlation test to evaluate its relation-

ship with the SnIPRE f parameter. We computed this correlation

for the 1,114 IIGs and for the remaining 8,557 protein-coding

sequences for which both degree centrality and f could be

determined. We compared these correlations by using a linear

model to estimate the effect of innate immunity in the relation-

ship between f and degree centrality. For the network representa-

tion, we used our IIG list as input for Cytoscape and retrieved in-

teractions among innate immunity proteins with the MiMI

plugin.54

Transcription, Signal Transduction, and Innate Immunity

We retrieved the list of genes coding for proteins involved in tran-

scription from the Gene Ontology ‘‘transcription, DNA-templated’’
American Journal of Human Genetics 98, 5–21, January 7, 2016 7



entry (GO: 0006351). From this list of 2,643 genes, we extracted

the 2,337 genes for which f values were calculated via SnIPRE.

We considered genes at the intersection of this GO list and our

set of IIGs as involved in both innate immune response and tran-

scription. We then compared the distribution of f values between

this group of genes involved in both innate immunity and tran-

scription with that of genes involved only in transcription

processes. Because our set of IIGs also includes entries from

InnateDB, we performed the same analyses by restricting the

comparisons only between the two Gene Ontology terms

‘‘transcription, DNA-templated’’ and ‘‘innate immune response.’’

The same rationale was applied to the comparisons involving

signal transducers; we retrieved a list of 1,875 genes from

the Gene Ontology ‘‘intracellular signal transduction’’ entry

(GO: 0035556) and extracted the 1,695 genes for which SnIPRE

f values were available.
Genome-Wide Detection of Positive Selection
Detection of Positive Selection via a Composite Statistics

We combined, for each SNP, the set of statistics used in previous

studies,5,55 based on haplotype homozygosity (iHS,13 DiHH,55

and XP-EHH12) or the degree of population differentiation

(DDAF55 and FST
56). In addition, we incorporated the DIND statis-

tics,14 which has been found to be powerful to detect positive se-

lection using low-coverage sequencing data.57 For statistics based

on haplotype homozygosity, we used the phased data of each

population of the 1000 Genomes Project and sliding windows

of 100 kb centered on each SNP. This procedure does not alter

the power to detect selection and ensures each statistics to be

computed using equivalent regions, in terms of recombination

rate, coverage, and allele frequency spectrum.57 Because some

of these statistics require the ancestral/derived state of mutations,

we retained sliding windows for which the ancestral/derived state

of the core SNPs was unambiguously determined, i.e., 97% of the

mutations of the 1000 Genomes dataset. Finally, we aimed to

minimize the false positive rate, by excluding windows in which

the core SNP had a derived allele frequency (DAF) below 0.2,

because the power to detect selection at this allele frequency is

limited.57

All neutrality statistics were then combined into a Fisher’s com-

bined score (FCS)

FCS ¼ �2
XK
i¼1

ln
�
pi
�

where K is the number of combined statistics and pi the empirical

p value for the ith statistics, i.e., the genomic rank of this ith statis-

tics divided by the total number of unique values obtained for this

statistics in the entire genome (values exactly equal get the same

rank and same p value). When pi values tend to be small, the FCS
tends to be large. Under neutrality, FCS has a chi-square distribu-

tion with 2K degrees of freedom. However, because the assump-

tion of dependency among pi is violated, we used the genomic dis-

tribution of FCS in an empirical genome-wide test of selection,

where the candidate SNPs with signals of selection are the ones

exhibiting the 1% highest FCS values, as reported for other statis-

tics.13,57 Note that the FCS is computed for each population

separately.

Statistical Analyses

Enrichments in positive selection signals among specific SNP

classes (e.g., genic, located in IIGs, etc.) were tested as previ-

ously described.8,13,57 Specifically, we used a logistic regression,
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generating an OR for the effect of positive selection. For a given

SNP class, the OR is defined as follows:

OR ¼
"
Pðclass j SELÞ
P
�
class j SEL�

#"
P
�
class j SEL�

P
�
class j SEL�

#
;

with class being the SNP class, e.g., class and class being genic and

non-genic SNPs, respectively, SEL and SEL being ‘‘with’’ and

‘‘without positive selection signal’’ respectively, i.e., SNP with an

extreme FCS value. For example, if positive selection has preferen-

tially occurred in genic regions, an OR > 1 would be expected, re-

flecting an enrichment in genic SNPs among SNPs with extreme

FCS values (e.g., OR ¼ 1.25 when there are 20% true and 80% false

positive among genic SNPs with extreme FCS values
57). Otherwise

(i.e., 100% of false positives among genic SNP outliers), we would

expect an OR ~1, indicating that the proportion of genic SNPs

among outliers is not greater than the expected proportion of

genic SNPs among all SNPs (~38% for the 1000 Genomes Project

datasets57). The p values of enrichment analysis were obtained

from 10,000 independent resamplings, taking into account link-

age disequilibrium (LD) between SNPs.57 For each resampling,

we drew non-overlapping regions of 500 consecutive SNPs and

arbitrarily assigned them to a given class, until we reached the

number of SNPs observed in this SNP class. We considered the re-

maining SNPs to be out of the given class and calculated theOR for

each resampling.57

Identification of Candidate Regions

To identify candidate gene regions evolving adaptively, we used a

conservative approach based on the degree of clustering of SNPs

with extreme FCS values (i.e., the 1% top FCS values).13,57 We

used sliding windows of 100 kb centered on each SNP that contain

at least 100 variants. We computed, for each 100 kb window, the

proportion of extreme FCS values and grouped these windows

into 75 bins of equal sizes based on the total number of SNPs

observed. Finally, we considered the 1% of windows with the

highest proportion of extreme FCS values in each bin as being un-

der positive selection. A gene is thus considered to be a target of

positive selection if it contains at least one window falling into

this criterion.

Assessing the Power to Detect Selection

To evaluate the power to detect positive selection using the FCS,

we used cosi258 to simulate DNA regions according to realistic,

accepted scenarios of human demography, as previously used

for the 1000 Genomes Project dataset (for details on the parame-

ters of the demographic model used, see Grossman et al.5). We

simulated 60 unrelated individuals in each population sample,

matching the 1000 Genomes Project dataset. We simulated

200-kb DNA regions with recombination rates sampled from

the HapMap recombination map to generate realistic recombina-

tion patterns including local hotspots.59 We simulated neutrally

evolving regions and positive selection assuming the hard sweep

model.60 Specifically, a single new advantageous mutation with

frequency 1/2N was inserted into the middle of the sequence in

a specific population (YRI, CEU, or CHB) at a specific time t,

with a population genetics selection parameter 2Ns ¼ 100 (selec-

tion coefficient s ¼ 0.01, N ¼ 10,000). We simulated different

models of hard sweeps, by specifying various ages t of the selected

allele (5 kya, 10 kya, 20 kya, and 30 kya) and various psel, i.e., the

frequency of the selected allele in the current generation (0.2, 0.4,

0.6, 0.8, and 1.0). We simulated 1,000 neutral-evolving regions

and 100 regions for each combination of selection parameters

(t, s, and psel).



Because we used 100-kb windows centered on each SNP in the

real data, and to avoid any truncation of these windows, we

trimmed all simulated SNPs located at less than 50 kb of the edges

of the 200 kb simulated regions. We computed the FCS for each re-

tained SNP located in the 100 kb in the middle of the 200 kb simu-

lated region. We normalized iHS and DIND via the same method

as previously described.13,57 The empirical p value pi used in the

computation of FCS was determined for each population sepa-

rately, using all neutral simulations. We detected simulated re-

gions under positive selection on the basis of the proportion of

extreme FCS values. The power to detect positive selection was

then computed as the proportion of regions simulated under pos-

itive selection effectively detected by our statistics (i.e., the per-

centage of simulations presenting proportions of extreme FCS
values above the neutral threshold defined for a FPR of 1%).

Annotation using GWAS Hits and Immune-Related eQTLs

For the 57 IIGs presenting signatures of positive selection

(i.e., innate immunity genes carrying at least one SNP whose win-

dow has a proportion of outlier FCS among the 1% of genome-wide

windows), we explored their involvement in diseases or traits by

using hits of genome-wide association studies (GWASs) and

expression quantitative trait loci (eQTLs) data. For the GWAS ana-

lyses, we used the data from the 02/06/2015 version of the NHGRI

database and only GWAS signals with p values lower than 53 10�8

were considered. We used two approaches: the first (gene-based)

approach relies on the fact that the tested IIG is the reported

gene of a GWAS hit. The second (SNP-based) approach considers

equivalence or strong LD between candidate SNPs for positive se-

lection and SNPs reported as best GWAS hits. For this second LD-

aware approach, we selected all outlier SNPs (i.e., FCS among the

1% of genome-wide windows) in the genomic region of the tested

IIG. We then retrieved all SNPs in strong LD (r2 > 0.8) with any of

these candidate SNPs, using the correlation coefficient imple-

mented in Plink61 on the unphased 1000 Genomes Project data

for the relevant population (i.e., that where the FCS signal was

maximal). We finally checked whether some of our candidate

SNPs for positive selection, or any SNP in LD with them, were

among GWAS best signals. For the eQTL data, we used the same

SNP-based approach to identify candidate positively selected

SNPs that have been previously associated with the expression

of surrounding genes in purified, stimulated monocytes (i.e.,

21,516 eQTLs from Fairfax et al.62). We considered only the best

p value obtained across stimulation conditions (FDR < 0.05).
ABC Estimation of the Age of Selection
We used an approximate Bayesian computation (ABC) approach63

to estimate the posterior probability of the age of selection of

candidate mutations according to the model described above,

i.e., a new advantageous mutation, occurring at a frequency of

1/2N, in a specific population, at a specific time t. We simulated

200-kb regions with a selected SNP located in the center of the

sequence, according to the demographic model and recombina-

tion patterns described above. To generate a set of 2 3 105 simula-

tions, we used uniform prior distributions for the age and intensity

of selection and for the current frequency of the selected allele: the

age of selection (t) varies from 0 to 62,500 years, the intensity of

selection (s) varies from 0.002 to 0.05, and the current frequency

of the selected allele (psel) from 0.2 to 1.0. Note that the prior dis-

tributions of the age and intensity of selection do not remain

uniform because some parameter vectors (t, s, psel) are unlikely

(e.g., ancient selective events of strong intensity cannot generate
The
a frequency of the selected allele equal to 0.2). Finally, we also

simulated the low-coverage nature of the data (53) by randomly

drawing limited numbers of reads.57

We initially used a set of summary statistics (ƟS, Ɵp, Tajima’s D,

Fay and Wu’s H, iHS, and FST) that are informative for estimating

age of selection in an ABC framework,64 to which we incorporated

the DIND statistics.14,57 As performed for iHS and DIND, ƟS, Ɵp,

Tajima’s D, and Fay and Wu’s H were computed in a window of

100 kb around the selected mutation. We tested the performance

of various sets of summary statistics with different ABCmethods—

ridge and neuralnet—implemented in the ‘‘abc’’ R package. We

validated the performance of the ABCmethods by using simulated

datasets as if they were true empirical data, for which parameter

values to estimate are known. This procedure allowed us to

compare the estimated to the true values via various accuracy

indices: the prediction error PE (i.e., the mean square error

[MSE], divided by the prior variance of the parameter), the relative

estimation bias rEB (i.e., the bias expressed a proportion of the true

value, also known as relative error), and the coverage of the 95%

credible interval (95% COV) (i.e., the percent of times where the

true value was found within the 95% credible interval). Let qk
and bqk be the true and the ABC estimated values of the parameter

q in the kth simulated dataset:

PE ¼
1
S

PS
1

� bqk � qk

�2

varðqÞ ;

rEB ¼ 1

S

XS

1

� bqk � qk

��
qk;

95%COV ¼ 1

S

XS

1
1ðq1 < qk < q2Þ;

where S is the number of simulated data, 1(C) the indicative

function (equal to 1 when C is true, 0 otherwise), and q1
and q2 the two percentiles of the posterior distribution of bqk
(q1 and q2 were adjusted to obtain 95% COV approximately

equal to 0.95). These accuracy indices were computed using S

equal to 300 simulated data. Note that the posterior distribu-

tions were obtained by retaining the 1,000 ‘‘best’’ simulations

in the ABC procedure.

We next aimed to improve the ABC estimations by adding more

summary statistics. We first used the summary statistics described

above (‘‘set 1 of summary statistics’’) as well as their corresponding

average and proportion of 1% top values computed over 100 kb

around each candidate variant (‘‘set 2 of summary statistics’’).

Furthermore, we aimed to boost the ABC estimations by including

arithmetic transformations of the used summary statistics.65 Spe-

cifically, we applied to the set 2 of summary statistics the following

transformation, T(SiSjRi) with Si and Sj the i
th and jth summary sta-

tistics. This procedure generated a new set of summary statistics

(‘‘set 3 of summary statistics’’) that were used in the neuralnet

ABC method, which will be referred to as the boosted-neuralnet

ABC method.
Analysis of Neandertal Ancestry
To investigate introgression from archaic hominins to modern

humans at IIGs, we used the probabilities of Neandertal ancestry

calculated for each SNP of the 1000 Genomes Project dataset.22

These probabilities were obtained using a conditional random

field method, which takes into account the allelic state at a SNP
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in non-African, Neandertal, and Yoruba individuals, the relative

sequence divergence between these individuals and the consis-

tency of haplotype lengths with estimated time of interbreeding

with archaic humans.22 We downloaded the inferred Neandertal

ancestry at each allele and used the reported combined results

across the CEU, GBR, FIN, IBS, and TSI populations as representing

Europeans (EUR) and CHB, CHS, and JPT as representing East

Asians (ASN).

We calculated the average introgression score for each protein-

coding gene (i.e., removing open reading frames and genes en-

coding for putative proteins) as the average of the marginal prob-

abilities of Neandertal ancestry for all bases of the gene. We then

compared the distributions of the average introgression scores for

our set of IIGs and the remainder of protein-coding genes. p

values between distributions were obtained from 106 indepen-

dent resamplings, taking into account the genomic correlation

of average introgression scores. To this end, we retrieved genomic

regions showing high probability to be introgressed from Nean-

dertal for each population, defined as runs of SNPs that have a

probability of Neandertal ancestry > 0.9. We calculated the me-

dian length of contigs (called mlc) obtained by constructing a

tiling path across confidently inferred Neandertal haplotypes in

each population as described in Sankararaman et al.22 We

divided the genome in adjacent windows of length mlc and as-

sessed the distribution of the number of protein-coding genes

and IIGs by window. Resamplings were carried out taking into ac-

count the distribution of number of IIGs by window. We used

the resampled datasets to obtain the expected distribution of

Mann-Whitney U under the null hypothesis and calculate the

empirical p values.

Finally, we determined the 5% of genes harboring the highest

probability of Neandertal ancestry at the genome-wide level

and searched for those that corresponded to IIGs. These latter an-

alyses were restricted to the CEU and CHB populations, because

they were those used to detect positive selection in modern hu-

mans. For the haplotype analyses, we retrieved confidently in-

ferred Neandertal haplotypes, i.e., runs of SNPs that present a

probability of Neandertal ancestry > 0.9 (see Sankararaman

et al.22).
Results

Building of the Innate Immunity Gene List

We established a list of innate immunity genes (IIGs) by

combining two publicly available databases, Gene

Ontology (GO) and InnateDB,45,46 which we manually

curated according to a number of criteria listed in Material

and Methods. This yielded a curated set of 806 genes from

GO and 905 from InnateDB, 345 of which were overlap-

ping (Figure S1A). Furthermore, we incorporated an addi-

tional set of 187 genes that were missing from these data-

sets at the time of the study, making a final list of 1,553

IIGs (Table S1). We then classified all IIGs according to

their main known (or inferred) function into nine different

categories, ranging from sensors of microorganisms or

danger signals to adaptor and effector molecules, and we

also included regulators of the signaling pathways and

accessory molecules necessary for an efficient immune

response (Figure S1B).
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Pervasive Signatures of Purifying Selection at Innate

Immunity Genes

To define the degree of selective constraint at IIGs, we first

investigated the extent to which purifying selection has

acted on the different categories of IIGs since the diver-

gence of human and chimpanzee lineages. To do so, we

used the exome dataset from the 1000 Genomes Proj-

ect44 and merged all individuals into a single group to

focus on the human lineage. For all protein-coding se-

quences, where we applied the same filtering criteria as

those applied to IIGs (Material andMethods), we estimated

the f parameter via SnIPRE,47 which estimates the degree of

selective constraints at each gene by using polymorphism

and divergence data at non-synonymous and synonymous

sites. The lower the f value, the stronger the deficit of non-

synonymous mutations compared to synonymous

variants, highlighting strong evolutionary constraints

(Table S1).

We found that the distribution of the f parameter

for IIGs was significantly skewed toward lower values

(Figure 1A; resampling p < 4.7 3 10�3 considering gene

length and number of SNPs per gene). Similar results

were obtained when performing the analyses with

the GO and InnateDB gene lists separately (resampling

p < 7.6 3 10�4 and p < 2.7 3 10�3, respectively),

indicating that our inclusion criteria of IIGs have nomajor

impact on our conclusions. This suggests that

genes involved in innate immune processes eliminate pro-

portionally more non-synonymous variants than

the remainder of protein-coding genes. When restricting

the analyses to genes presenting the lowest f values at

the genome-wide level, we observed a systematic enrich-

ment in IIGs using different percentiles (Figure 1B). For

example, when focusing on genes displaying the 1%

lowest f values, we observed a strong, significant enrich-

ment in IIGs (OR ¼ 2.42, resampling p < 4 3 10�5), corre-

sponding to the set of IIGs that have evolved under the

strongest degree of purifying selection (Table 1). Such a

significant enrichment was also observed when consid-

ering the different populations separately (OR > 1.82, re-

sampling p < 9.3 3 10�4), consistent with the high corre-

lations observed between population-specific and species-

wide f values (Figure S2). This suggests that the degree of

purifying selection on IIGs is similar across populations

and independent of recent variation in environmental

pressures.

To test the functional impact of variation at IIGs on pro-

tein structure or function, we first evaluated the deleteri-

ousness of exonic variants by using the PHRED-scaled

C-scores provided by CADD.49 Interestingly, the propor-

tion of variants with a scaled C score R 15 (i.e., among

the ~3% most deleterious mutations of the genome) was

lower in IIGs compared to non-IIGs (0.425 and 0.463,

respectively; p¼ 2.13 10�41; Figure S3A), a pattern consis-

tently observed along the site frequency spectrum, with

the exception of high-frequency alleles (Figure S3B). We

next tested whether IIGs known to be involved in severe
6



Figure 1. Varying Degrees of Selective Constraints Targeting Innate Immunity Genes
(A) Strength of purifying selection acting on innate immunity genes and the remainder of protein-coding genes, as measured by the f
value. We tested the significance of the observed difference bymeans of 105 resamplings taking into account gene length and number of
SNPs per gene in the two tested gene sets (***p < 4.7 3 10�3).
(B) Enrichment of innate immunity genes among themost constrained genes at the genome-wide level, as assessed by odds ratios (ORs).
We calculated ORs for increasing percentiles of the f distribution, with a pace of 1%. The 95% confidence intervals of ORs were calculated
via the Fisher’s exact test.
(C) Strength of purifying selection acting on the different functional categories of innate immunity genes, as measured by the f value
(UC stands for unclassified).
(D) Innate immunity protein interaction network. Only innate immunity proteins interacting with a molecular partner also involved in
this cellular process are represented. Node sizes are negatively correlated to f values, i.e., large nodes represent low f values, indicating
stronger action of purifying selection. Color codes are the same as those used in (C).
diseases such as primary immunodeficiencies (PID)

were under stronger selective constraints than the

remainder of IIGs. Although no significant differences

were observed between the global distributions of the f

parameter, IIGs associated with autosomal-dominant

forms of PID presented significantly lower f values (resam-

pling p < 1.5 3 10�2) than the remainder of IIGs

(Figure S4).

We next assessed whether the global signal of strong

purifying selection at IIGs differed among genes with

distinct functional roles in innate immunity. A strongly

significant difference was detected (Kruskal-Wallis rank

sum test p < 2.2 3 10�16; Figure 1C). Molecules involved

in signal transduction and transcription were those pre-

senting the strongest selective constraints. Such con-

straints could indicate the additional involvement of these

genes in functions other than innate immunity. To test

this hypothesis, we compared the f values of the ‘‘signal
The
transduction’’ and ‘‘transcription’’ groups of IIGs with

those of signal transducers and transcription factors that

are not part of innate immunity processes. Innate immu-

nity molecules involved in these processes presented

significantly lower f values than their respective compari-

son groups (Figure S5), suggesting that their involvement

in innate immunity has further constrained their evolu-

tion. We also observed that sensor and effector molecules

presented the greatest range of f values (Figure 1C), indi-

cating that the degree of constraint affecting these cate-

gories varies among their members. For example, when

comparing the f values among the different sub-families

of receptors, we found that the family of cytosolic nucleic

acid sensors (CNASs) displays the strongest deficit of non-

synonymous mutations (Kruskal-Wallis rank sum test

p ¼ 2.9 3 10�3), whereas RIG-I-like receptors (RLRs) were

those evolving under the most relaxed selective con-

straints (Figure S6).
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Table 1. Innate Immunity Genes Presenting the Strongest
Signatures of Purifying Selection at the Genome-wide Level

Functional Category Genes

Sensors DHX9

Adaptors CNKSR2, CTNNB1, SRC, SYK

Signal transducers CAMK2B, MTOR, TRAF3

Transcription GATA3, HNRNPL, SMARCA2, SMARCA4,
STAT1

Effectors AGO1, AGO2, AGO3

Secondary receptors EGFR

Accessory molecules HSP90AB1, UBC

Regulators CYLD, HDAC1, KHSRP, MID2, USP7

UC ACTB, ACTG1, CYFIP2, DOCK1, FSCN1,
ITPR1, NCKAP1, TUBB4B
Finally, we tested whether the varying degree of selective

constraints detected at the different IIGs could be partly

explained by their localization in the protein-protein inter-

action network (PIN). We therefore reconstructed the

innate immunity PIN using the protein interactions from

the BioGRID database.51 As previously observed in other

protein interaction networks,42,66,67 we observed a nega-

tive correlation between degree centrality and f values,

with genes located in the center of the network (mostly

signal transducers and transcription factors) presenting

the strongest selective constraints (Figure 1D). Interest-

ingly, a stronger negative correlation was observed for

IIG products than for the remainder of protein-coding

genes (R ¼ �0.341 and �0.186, respectively; p ¼ 3.56 3

10�4), suggesting a crucial role of network topology in

driving the specific evolution of genes involved in innate

immunity.

Identification of Regions Presenting High-Confidence

Signals of Positive Selection

We next searched for IIGs that present signals of

recent, population-specific positive selection, because

they should contain variation that has contributed to

human adaptation to varying environments. To do so,

we restricted our analyses to (1) one population per

geographic region—Yoruba from Nigeria (YRI), Northern

Europeans (CEU), Han Chinese from Beijing (CHB)—and

(2) the low-coverage dataset of the 1000 Genomes Proj-

ect, because we needed to go beyond exonic regions to

compute statistics based on extended haplotype homozy-

gosity (Material and Methods). The low coverage (~53)

of this dataset has been shown to have little impact

on the power of some statistics to detect positive se-

lection.57

To detect signals of local adaptation, we used a compos-

ite method, the Fisher’s combined score (FCS), because

using composite methods has been shown to increase

power and minimize the detection of false positive

signals.5,55,68 We combined statistics based on haplotype
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homozygosity (iHS, DiHH, and XP-EHH), intra-allelic

haplotype diversity (DIND), and population differentia-

tion (DDAF and FST). We first assessed the power of FCS
by conducting a simulation-based study (Figure 2), which

considered accepted demographic scenarios for the popu-

lations studied. We found that the power of FCS was com-

parable to that of the composite of multiple signals

(CMS) test.5 Furthermore, the power of FCS, which is not

affected by the inclusion or removal of highly correlated

statistics (Figure S7), declines with the age of selection,

particularly among non-Africans (Figures 2 and S8). This

indicates that FCS tends to favor the detection of recent

events of positive selection (i.e., <30 kya).

At the genome-wide level, among SNPs displaying

multiple selection signals, we found a significant enrich-

ment in genic with respect to non-genic regions (OR > 1,

p < 10�4; Table S2), as previously reported.5,57 That no

significant enrichment in SNPs located in IIGs was

observed among SNPs with multiple selection signals,

nor among the different categories of innate immunity

genes (data not shown), suggests that positive selection

has not targeted IIGs to a greater extent than the

remainder of the genome (Table S2). However, we identi-

fied a set of IIGs presenting strong signatures of positive

selection, by looking at gene regions with a high clus-

tering of SNPs presenting selection signals.5,13,57 Specif-

ically, we searched for 100-kb windows with the highest

(top 1%) proportions of SNPs with extreme FCS values,

and found 1,110 (YRI), 670 (CEU), and 1,229 (CHB) of

such sliding windows, corresponding to 21, 16, and 22

genes, respectively (Table 2). We retrieved several already

reported signals of positive selection, including TLR6-

TLR1-TLR10 (MIM: 605403, 601194, 606270), IL4

(MIM: 147780), IFIH1 (MIM: 606951), CD36 (MIM:

173510), and CEACAM1 (MIM: 109770),5,8,14,36,38,69,70

but also a number of previously uncharacterized hits

(Table 2).

To fine-map the candidate variants underlying the posi-

tive selection signals, we merged the SNPs from the low-

coverage and exome high-coverage datasets for each of

the 57 candidate genes, considering also their flanking re-

gions (1 Mb upstream and downstream). The incorpora-

tion of the exome data allows detection of variants that

have failed to pass the quality-control filters and are

missing in the low-coverage data, e.g., the known func-

tional non-synonymous SNP rs5743618 in TLR1

(GenBank: NM_003263.3; c.1805G>T [p.Ser602Ile]).14

We re-computed the FCS statistics on this merged dataset

and determined the variants that exhibited the strongest

selection signals (1% variants with highest FCS; dark blue

dots in Figure 3). Focusing on coding variation, we identi-

fied 13 high-scoring variants (12 non-synonymous vari-

ants and 1 stop mutation) in 11 genes (Table 2 and

Figure 3), some of which have been previously identified

as adaptive mutations, e.g., rs5743618 in TLR114

(GenBank: NM_003263.3; c.1805G>T [p.Ser602Ile]),

rs10930046 in IFIH136,38 (GenBank: NM_022168.3;
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Figure 2. Power of the Fisher’s Combined Score to Detect Positive Selection
We simulated 200-kb DNA regions according to accepted scenarios of human demography for West African (YRI), European (CEU), and
East Asian (CHB) samples (see Material and Methods and Grossman et al.5). We simulated positive selection models, in each population
separately, using various ages (t) of the selected allele (5 kya, 10 kya, 20 kya, and 30 kya) and current frequencies (psel) of the selected allele
(0.2, 0.4, 0.6, 0.8, and 1.0), and setting the selection coefficient s to be equal to 0.01 (100 datasets for each parameter combination, see
Material and Methods). For each population, we plot the power (i.e., the proportion of simulated regions under positive selection effec-
tively detected) obtained with the FCS as well as, for comparison, FCS_DIND (i.e., FCS removing the DIND statistics), iHS, and XP-EHH
(see Material and Methods, FPR of 1%). For a detailed comparison of the differences in power of the FCS with respect to different com-
binations of neutrality statistics, see Figure S7. Left panels show, for each population, the power obtained with ages of selection t uni-
formly distributed from 5 kya to 30 kya. Smaller right panels display, for each population, the power obtained with ages of positive
selection of 5 kya, 10 kya, 20 kya, and 30 kya, respectively. The x axis represents the current frequency of the selected allele psel.
c.1379A>G [p.His460Arg]), and rs3211938 in CD3670

(GenBank: NM_000072.3; c.975T>G [p.Tyr325Ter]).

Finally, we explored the involvement of the 57 candi-

date genes in diseases or traits by using GWAS and eQTL

data. We found that 27 of them have been associated, to
The
different extents, with common diseases, including

susceptibility to infections or autoimmune disorders

(enrichment resampling p ¼ 3.77 3 10�4, 3.71 3 10�2,

and 0.058 in YRI, CEU, and CHB populations, respectively,

compared to all IIGs; Table S3). For 13 of these genes, we
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Table 2. Innate Immunity Genes Showing the Strongest
Signatures of Positive Selection

Population Innate Immunity Genesa

YRI VSP45, CD1D, FCER1A, LTBP1, CCDC88A, LY75,
IFIH1, LTF, CCR2, CD80, MAPK10, CD36,b ZFPM2,
TRIM55, CHUK, DAK, POLR3B, HIF1A, CEACAM1,
TNRC6B, MYH9

CEU CCDC88A, TLR10, TLR1, TLR6, MAP3K1, IL4, IRGM,
TRIM27, EYA4, ARPC1A, ZC3HAV1, SRPK2,
SMARCA2, SIRT1, DUOX1, ADAM10

CHB ARHGEF2, ADAM15, LYST, PELI1, ACTR2, MERTK,
ERBB4, SP100, RAF1, LRRFIP2, CLEC3B, RHOA,
GAB1, FER, ITPR3, EGFR, BLK, NRG1, SIRT1, OTUB1,
ARHGEF7, PIAS4

aThese genes overlap with at least one 100-kb window with the 1% highest
proportions of outlier SNPs with the highest FCS values. Note that larger genes
have a higher probability to be attributed to a selection signal (regardless of
whether this is a true or false signal), with respect to small genes. Genes that
are underlined contain at least one non-synonymous mutation with an outlier
FCS value: IFIH1: rs10930046 (GenBank: NM_022168.3; c.1379A>G [p.Hi-
s460Arg]); LTF: rs60938611 (GenBank: NM_001199149.1; c.446C>T
[p.Ala149Val]); ZFPM2: rs11993776 (GenBank: NM_012082.3; c.1208C>G
[p.Ala403Gly]); DAK: rs2260655 (GenBank: NM_015533.3; c.553G>A
[p.Ala185Thr]); TLR1: rs5743618 (GenBank: NM_003263.3; c.1805G>T
[p.Ser602Ile]) and rs4833095 (GenBank: NM_003263.3; c.743A>G
[p.Asn248Ser]); TLR6: rs5743810 (GenBank: NM_006068.2; c.745T>C
[p.Ser249Pro]); MAP3K1: rs702689 (GenBank: NM_005921.1; c.2416G>A
[p.Asp806Asn]); MERTK: rs7604639 (GenBank: NM_006343.2; c.1397G>A
[p.Arg466Lys]) and rs2230515 (GenBank: NM_006343.2; c.1552A>G
[p.Ile518Val]); CLEC3B: rs13963 (GenBank: NM_003278.2; c.316G>A
[p.Gly106Ser]); and NRG1: rs3924999 (GenBank: NM_001159995.1;
c.50G>A [p.Arg17Gln]).
bCD36 contains an outlier premature stop mutation (rs3211938, GenBank:
NM_000072.3; c.975T>G [p.Tyr325Ter]).
also identified a strong correlation between our candidate

SNPs for positive selection and GWAS best hits (Table S4).

In addition, we found that SNPs at 30 of the 57 genes

were significantly associated with the expression of sur-

rounding genes (Table S5), based on eQTL data from

monocytes activated with various immune stimuli.62 We

therefore provide a list of high-confidence genes andmuta-

tions that might have conferred a selective advantage for

local adaptation to specific human populations.
Estimating the Age of Genetic Adaptations Targeting

Innate Immunity

We next aimed to estimate the age, t, at which positive

selection has targeted the high-scoring coding variants

described above (Table 2), using an ABC framework.63 We

first checked the accuracy of the ABC estimations and

tested the performance of various sets of summary statis-

tics (Material and Methods) with different ABC methods

(i.e., ridge and neuralnet), using simulated datasets (Table

S6). As previously reported,64 we observed some overesti-

mations of t, e.g., the best relative estimation bias (rEB)

being around 0.3 when using the ‘‘set 2 of summary statis-

tics.’’ We therefore aimed to improve our ABC estimations

and found that the best estimations were obtained when

including arithmetic transformations of the summary

statistics.65 Specifically, when implementing the boosted-

neuralnet method, we obtained the greatest accuracy, i.e.,

lowest relative estimation bias (rEB) and lowest prediction
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error (PE) (see ‘‘set 3 of summary statistics’’ in Table S6). We

also noticed that the estimations of t are more accurate for

more recent events of positive selection, as expected when

considering that the power to detect selection decreases

with the age of selection (Figure S9 and Table S7).

We used the boosted-neuralnet method to estimate

the age of selection for the C/T-13910 polymorphism

(rs4988235, GenBank: NM_005915.5; c.1917þ326C>T)

in the LCT (MIM: 603202) region, the most iconic case

of positive selection in Europeans associated with lactase-

persistence in adulthood.71–73 We found an estimated age

(7,100 years; 95% CI: 3,500–11,000; Table S8 and

Figure S10) in good agreement with previous reports

(8,000 years in Tishkoff et al.,73 7,400 years in Itan

et al.,72 and 11,200 in Peter et al.64). We therefore applied

this procedure to estimate the selection ages for the 13

high-scoring coding variants at IIGs. In all cases, selection

events were dated at ~6,000–13,000 years ago (Table S8 and

Figures S11–S13) with a few exceptions. The most recent

selection events were estimated at less than 3,900 years,

for CD36 in Africans and NRG1 (MIM: 142445) in Asians,

and the oldest was found at 35,500 years for CLEC3B

(MIM: 187520) in Asians.

Investigating Neandertal Ancestry of Innate

Immunity Genes

Recent studies of individual loci have shown that adaptive

immunity genes such as HLA or innate immunity genes

such as STAT2 andOAS carry haplotypes inmodernhumans

that appear to have introgressed from archaic popula-

tions.23–25 In light of this, we evaluated, at the genome-

wide level, the extent to which modern humans have

acquired variation at IIGs via ancient admixture. We first

assessed the degree of Neandertal ancestry among IIGs as

a whole, taking advantage of the Neandertal introgression

map.22 We found that IIGs have a higher average introgres-

sion score when compared to the remainder of the coding

genome, in both Europeans and Asians (p ¼ 8 3 10�6

and p ¼ 2 3 10�6, respectively; Figure 4A). Notably,

these results were also significant when considering the

different European and Asian subpopulations individually

(p % 1.8 3 10�5 in all subpopulations). This result cannot

be accounted for by the strong selective constraint detected

at IIGs, because this selective regimehas been associated to a

decrease in Neandertal ancestry.22

Next, we determined the 5% of genes genome-wide

harboring the highest probability of Neandertal ancestry

in each population and searched for those corresponding

to IIGs. Out of the sets of 810 genes presenting the highest

introgression scores, we found 76 and 78 IIGs in Europeans

and Asians, respectively, 28 of which were shared between

the two groups (Table S9). Among these genes, we found

theOAS gene cluster, as previously documented by a candi-

date gene study.25 Importantly, we detected additional

regions involved in innate immunity, including genes en-

coding receptors such as NLRC5 (MIM: 613537) in Asians,

transcription factors such as IRF6 (MIM: 607199) in Asians,
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Figure 3. Innate Immunity Genes Pre-
senting High-Confidence Signals of
Geographic Adaptation
Four examples of innate immunity genes
presenting strong signals of positive selec-
tion, including (A) theTLR6-1-10 gene clus-
ter in CEU, (B) IFIH1 in YRI, (C) MERTK in
CHB, and (D) ZFPM2 in YRI. The black
curves delineate the proportions of outlier
SNPs (i.e., SNPs with the 1% highest FCS
values of the genome), within 100-kb re-
gions, at the genome-wide level, using the
low-coverage 1000 Genomes Project data-
set (see Material and Methods for details).
Blue dots represent the FCS value of each
SNP, calculated using the merged dataset
(both high- and low-coverage) for the fine
mapping of putative adaptive mutations.
Dark blue dots indicate SNPs with the 1%
highest FCS values of the genome, within
which non-synonymous variants are repre-
sented by red triangles. The remaining vari-
ants are plotted in light blue, where trian-
gles representnon-synonymousmutations.
and effector molecules such as the IFITM1-3 (MIM:

604456, 605578, 605579) gene family in Europeans and

some type I IFNs in Asians.

Remarkably, two regions that we found to present high

Neandertal ancestry—the TLR6-TLR1-TLR10 gene cluster

and SIRT1 (MIM: 607199)—were also part of our high-con-

fidence genes under positive selection in Europeans and

Asians, respectively (Table 2). For these regions, we identi-

fied the SNPs that were most probably introgressed from

Neandertal22 (Figures 4B and 4C) and determined whether

they were correlated to candidate SNPs for positive selec-

tion. In SIRT1, introgressed haplotypes were not specif-

ically carrying any of our candidate SNPs, suggesting that

variation identified as under positive selection in modern

humans has not been acquired through archaic admixture.

For TLR6-TLR1-TLR10, haplotypes of inferred Neandertal

origin (16% in CEU and 49% in CHB) were tagged

by SNPs detected as targets of positive selection in Euro-

peans, including the non-synonymous SNP rs4833095 at

TLR1 (GenBank: NM_003263.3; c.743A>G [p.Asn248Ser]),

which is in partial LD (r2 ¼ 0.657) with the functional

rs5743618 variant (GenBank: NM_003263.3; c.1805G>T

[p.Ser602Ile]). However, the rs4833095 allele most

probably introgressed from Neandertal is not the puta-

tively selected derived allele (associated with protection

against asthma, allergy, and hay fever)74–76 but the ances-

tral, rare allele. These patterns suggest a much more com-

plex history than a single adaptive mutation transmitted
The American Journal of Hum
to Eurasians on a Neandertal haplo-

type background (Figures 4B and 4C).

Discussion

In this study, we have taken advan-

tage of whole-genome sequence data-
sets to provide a comprehensive assessment of how selec-

tion, in its different forms and intensities, has driven the

evolution of innate immunity genes in humans. We

must point out that any definition of ‘‘innate immunity’’

is arbitrary and not exempt of ambiguity. Herein, our defi-

nition of innate immunity includes intrinsic, non-hemato-

poietic immunity, in addition to the traditional definition

of innate immunity as hematopoietic and non-adaptive.

Bearing this in mind, there are several important insights

that can be drawn from our study.

First, we show that innate immunity genes evolve under

stronger selective constraints than the remainder of pro-

tein-coding genes, indicating that the purge of deleterious

mutations has been particularly important in this gene

class. This observation is consistent with pathogens being

one of the most important long-time threats to human

survival.4,15 Furthermore, innate immunity is germline

encoded, unlike adaptive immunity whose variation is

mostly somatic,28,29 and ensures the sensing of pathogens

and the maintenance of homeostasis with symbiotic mi-

crobiota.27 Consequently, any mutation disturbing these

processes would be deleterious and rapidly eliminated

from the population. That the strength of selective con-

straints varies considerably among functional categories,

as well as among the different members within each, in-

forms us about the degree of redundancy or essentiality

of the corresponding genes. For example, among sensors,

the relaxed constraints of cytosolic RLRs attest to higher
an Genetics 98, 5–21, January 7, 2016 15



Figure 4. Neandertal Ancestry of Innate Immunity Genes
(A) Comparison of the average introgression scores of innate immunity genes (IIGs) with respect to the remainder of protein-coding
genes (non-IIGs) in European (EUR) and East Asian (ASN) populations. ***p < 0.001 (see Material and Methods).
(B and C) Haplotypes of Neandertal ancestry in (B) CEU individuals at the TLR6-TLR1-TLR10 gene cluster and (C) CHB individuals at the
SIRT1 locus. Confidently inferred haplotypes of Neandertal ancestry, defined as long runs of SNPs that present a probability of Nean-
dertal ancestry> 0.9,22 are indicated in blue in each diploid individual from the 1000 Genomes Project. Red shadows highlight genomic
regions containing innate immunity genes.
immunological redundancy,39 whereas the strong purify-

ing selection detected for the CNASs, similar to that of

endosomal TLRs,14 suggests that variation at these mole-

cules might be strongly deleterious for the host.

That genes evolving under strong purifying selection

are likely to fulfill essential, non-redundant functions in

host defense is supported by the observation that innate

immunity genes associated with autosomal-dominant

forms of primary immunodeficiencies present the stron-

gest evolutionary constraints (Figure S4). This is well illus-

trated by the cases of STAT1 (MIM: 600555) and TRAF3

(MIM: 601896),2 which are among the 1% most con-

strained of the genome (Table 1). Indeed, gain- and loss-

of-function mutations at STAT1 have been associated

with a range of immunological and clinical phenotypes,

including life-threatening and mild bacterial and viral

diseases, Mendelian susceptibility to mycobacterial dis-

ease, chronic mucocutaneous candidiasis, and autoimmu-

nity.77 Similarly, deficiency in TRAF3 has been associated

with herpes simplex virus 1 encephalitis, a devastating

infection of the central nervous system.78 These examples

support the notion that the genes we report as targeted by

strong purifying selection are of major biological rele-

vance in host survival. Given the pleiotropic functions

of many innate immunity genes, it is conceivable that

some of these genes might be involved in mechanisms

that can go beyond immunity, including housekeeping

functions. Regardless of the breadth of their biological

functions, mutations in highly constrained IIGs are likely

to predispose individuals to life-threatening disease;

combining next-generation sequencing and evolutionary

data in clinical studies should facilitate the discovery of
16 The American Journal of Human Genetics 98, 5–21, January 7, 201
novel genetic etiologies of severe, infectious disease

phenotypes.

Second, our study shows that innate immunity genes

have not undergone hard sweeps to a greater extent than

the remainder of the genome, supporting the notion that

polygenic adaptation has been pervasive among functions

related to innate immunity.79 However, we identify 57

genes presenting high-confidence signals of selective

sweeps in specific populations (Table 2). Most of the signals

detected in Europeans and Asians are accounted for by

nearly complete sweeps (mean selected allele frequency

of 67% [min 41%; max 88%] and 81% [min 31%; max

99%], respectively), whereas those identified in Africans

are largely explained by partial sweeps (mean 41% [min

22%; max 92%]). The general dearth of nearly complete

sweep signals in Africans is consistent with genome-wide

patterns,12,68,80 suggesting that increased drift and

geographic differences in selection pressures might have

inflated the number of nearly complete sweep signals

among non-Africans.80,81

Our age estimations show that most adaptations target-

ing coding variation at innate immunity genes have

occurred in the last 6,000–13,000 years. Some over-repre-

sentation of ‘‘young’’ positive selection events occurring

in the last 30,000 years is expected, because our simula-

tions show that the power of FCS tends to linearly decline

as the age of selection increases (Figures 2 and S8). Howev-

er, this decline was found to be moderate in African popu-

lations, suggesting that their enrichment in recent selec-

tion signals cannot be explained only by the power of

FCS. Despite the possible underestimation of older selec-

tion events, our estimated age ranges correspond well
6



with the transition from food collection (hunting/gath-

ering) to food production (farming/herding) starting

10,000–13,000 years ago.82 In this context, a recent study

of West Eurasian ancient samples dating to between

8,500 and 3,000 years ago has detected strong signals of

positive selection at loci related to pigmentation, diet,

and immunity, supporting a scenario of Neolithic popula-

tions adapting to sedentary agricultural lifestyles.83 The

strongest selective signal they detect is the lactase persis-

tence allele, the origin of which we estimate at 7,100 years,

which reached appreciable frequencies in early farmers

(~10%) around 4,300 years ago. The shift to agriculture

was also accompanied by increased population density,

food crises, and contacts with cattle and biological wastes,

which modified human exposure to pathogens84 and, as

our results suggest, was associated to some degree of ge-

netic adaptation.

Several of our high-scoring positively selected genes

have been associated with common infectious, inflamma-

tory, or autoimmune phenotypes (Table S3) and contain

variants that have been previously detected as evolving

adaptively in specific populations; e.g., IFIH1 and CD36

in Africans, the TLR6-TLR1-TLR10 cluster in Europeans,

and BLK (MIM: 191305) in Asians.5,8,14,36,38,69,70 The case

of the stop mutation Thr1264Gly at CD36 (rs3211938,

GenBank: NM_000072.3; c.975T>G [p.Tyr325Ter]) is

particularly worth discussing. CD36 is an archetypal

pattern recognition receptor that mediates cytoadherence

of Plasmodium falciparum-parasitized erythrocytes.85,86

Although the association between CD36 and malaria re-

mains complex,70,87 the stop variant represents a well-sup-

ported case of positive selection,70,88 which our analysis

confirms, reaching a frequency of 29% in the Yoruba

fromNigeria. It has been proposed that the high frequency

of this variant in Nigeria results from a geographically

confined selective event.70 That we estimate the age of

the stop variant at only 3,600 years (95% CI:

2,125–5,025 years) strongly supports the notion that the

increase in frequency of this mutation restricted to west-

central Africa represents a local, recent, and strong event

of genetic adaptation. Investigating the association be-

tween CD36 and malaria phenotypes specifically in Niger-

ian populations is now needed.

Importantly, our list of positively selected candidate

genes includes hits that have not been previously detected

as targets of selection but contain SNPs that are associated

with immunity-related phenotypes (Tables S3 and S4).

Notably, we have detected two high-scoring non-synony-

mous mutations in MERTK ([MIM: 604705], rs7604639,

GenBank: NM_006343.2; c.1397G>A [p.Arg466Lys],

and rs2230515, GenBank: NM_006343.2; c.1552A>G

[p.Ile518Val]; Figure 3C), with a derived allele frequency of

79% in the Asian population. Interestingly, variation at

MERTK, a member of the 3 TAM receptor tyrosine kinases

that are involved in the regulation of inflammatory

responses, has been associated with hepatitis C-induced

liver fibrosis.89 Likewise, our analysis suggests that positive
The
selection has increased the frequency to 58% in Africans of

a non-synonymous mutation in ZFPM2 ([MIM: 603693],

rs11993776, GenBank: NM_012082.3; c.1208C>G

[p.Ala403Gly]; Figure 3D). ZFPM2 modulates the activity

of GATA transcription factors at the HAMP (MIM: 606464)

promoter, an antimicrobial peptide involved in the meta-

bolismof iron,which is critical forMycobacterium tuberculosis

growth in macrophages.90 Variation at ZFPM2 has been

recently suggested to be associated with susceptibility to

tuberculosis in a South African admixed population.91 Alto-

gether, we provide a tractable list of high-scoring selected

coding variants for experimental follow-up, which are likely

to have played a dominant role in recent adaptations of hu-

man populations to their respective environments.

Finally, our study provides insight into the degree of

introgression of innate immunity genes from archaic hom-

inins. It has been shown that protein-coding genes are

generally depleted in Neandertal ancestry, owing to the

widespread effects of negative selection against Neandertal

ancestry in gene regions.22 Interestingly, we find that

innate immunity genes present a higher average probabil-

ity of Neandertal ancestry than the remainder of the

coding genome. Among the genes presenting the highest

Neandertal ancestry we find the IFITM1-3 proteins (Table

S9), a family of restriction factors that restrict the replica-

tion of multiple viruses in vitro, including influenza A,

dengue, and West Nile.92 In particular, variation at IFITM3

has been suggested to alter the morbidity and mortality

associated with influenza infection in humans.93 That

innate immunity genes present evidence of both strong

purifying selection and high Neandertal ancestry suggests

either a weaker purge or a slightly stronger selective advan-

tage of Neandertal alleles in innate immunity genes in

Eurasian populations.

Our analyses suggest that neutral introgression is the

most likely explanation for innate immunity genes pre-

senting high Neandertal ancestry, because virtually none

of them present any positive selection signal in modern

humans. However, this lack of adaptive introgression

signals could be also explained by the limited power of

the FCS statistics to detect old selection events and,

most importantly, other selective regimes, such as poly-

genic adaptation or selection on standing variation. For

example, alleles introgressed from archaic hominins prob-

ably had a substantial population frequency when positive

selection started to act on them in modern populations.

This emphasizes the need to extend our study by

including, and developing, statistics empowered to detect

more subtle models of positive selection.

Despite this potential limitation, the case of the

TLR6-TLR1-TLR10 cluster is particularly worth discussing.

First, it presents high Neandertal introgression scores in

both Europeans and Asians (Figure 4B and Table S9). Sec-

ond, TLR6-TLR1-TLR10 has been proposed to be a hotspot

of positive selection in human and non-human pri-

mates.94 Third, this gene region, here and elsewhere, is de-

tected as a strongly supported case of local adaptation in
American Journal of Human Genetics 98, 5–21, January 7, 2016 17



Europeans (Table 2).14,41,95 Further support for the adap-

tive significance of TLR6-TLR1-TLR10 comes from ancient

DNA data, where this gene cluster appears to be among

the strongest signals of selection detected.83 Furthermore,

three high-scoring adaptive non-synonymous mutations

have been detected in this region (Figure 3A), one of

which (rs5743618 in TLR1, GenBank: NM_003263.3;

c.1805G>T [p.Ser602Ile]) appears to be the genuine target

of selection; it remarkably impairs agonist-induced NF-kB

activation by up to 60% and is linked to infectious disease

phenotypes, such as leprosy.14,41,96,97 However, this hypo-

responsiveness allele is not present in the Neandertal ge-

nomes.98 More generally, for SNPs most probably intro-

gressed from Neandertal that show signatures of positive

selection in Europeans, the alleles present in archaic hom-

inins are rare and ancestral in modern humans, whereas

positive selection has targeted the frequent, derived

alleles. Altogether, although we provide compelling evi-

dence supporting both high Neandertal ancestry and pos-

itive selection for functional mutations at TLR6-TLR1-

TLR10, our analyses show that Neandertal introgression

is probably not the source of such adaptive variation.

Future studies should experimentally test whether the

Neandertal-introgressed variation detected at this gene

cluster has any functional impact on TLR-mediated im-

munity to infection.

In summary,our analyseshave shownthat thecontempo-

rary diversity of innate immunity genes in humans results

from the intermingling of different demographic and selec-

tive events, including introgression from Neandertal, hard

sweeps at some loci in specific human populations occur-

ring mostly during the Neolithic transition, and continued

selective constraints at other loci. In doing so, they increase

our understanding of the degree of essentiality and adapt-

ability of innate immunity genes, with several candidates

for having played a dominant role in recent adaptations,

and provide insight into the extent to which modern hu-

mans might have acquired variation at innate immunity

genes through admixture with archaic hominins.
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