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SUMMARY

Genotype-to-phenotype association studies typically use macroscopic physiological measurements or

molecular readouts as quantitative traits. There are comparatively few suitable quantitative traits

available between cell and tissue length scales, a limitation that hinders our ability to identify variants

affecting phenotype at many clinically informative levels. Here we show that quantitative image

features, automatically extracted from histopathological imaging data, can be used for image

quantitative trait loci (iQTLs) mapping and variant discovery. Using thyroid pathology images, clinical

metadata, and genomics data from the Genotype-Tissue Expression (GTEx) project, we establish and

validate a quantitative imaging biomarker for immune cell infiltration. A total of 100,215 variants

were selected for iQTL profiling and tested for genotype-phenotype associations with our quantita-

tive imaging biomarker. Significant associations were found in HDAC9 and TXNDC5. We validated

the TXNDC5 association using GTEx cis-expression QTL data and an independent hypothyroidism

dataset from the Electronic Medical Records and Genomics network.

INTRODUCTION

Genomics has had tremendous success in relating genetic variants to a variety of molecular phenotypes.

Variants associated with gene expression, so-called expression quantitative trait loci (eQTLs), are en-

riched for regions of active chromatin, influence gene regulation, and are involved in processes that

contribute to disease (Pickrell et al., 2010; Westra et al., 2013). At the macroscopic level, genome-wide

association studies (GWAS) that use physiological measurements of organ health have also provided

insight into the genetic component of human disease. However, given the immense gap between

SNP-level variation and tissue and body function, GWAS results concerning human traits can be chal-

lenging to interpret, in part due to the high correlations observed between studies of different traits (Bu-

lik-Sullivan et al., 2015). This is especially true for autoimmune diseases, which have many shared genetic

risk factors (Gutierrez-Arcelus et al., 2016). One way to increase GWAS variant interpretability and to

discover new disease variants will be to place more focus on quantitative traits that lie at intermediate

cellular and sub-tissue scales.

Histopathology has for decades remained the standard for the diagnosis and grading of many complex

diseases. Advances in digital slide imaging have allowed for unprecedented resolution at tissue, cellular,

and sub-cellular scales. As such, histopathology could provide the genomics community with a vast

resource of quantitative traits for evaluating disease phenotype across a range of mesoscopic scales. Pre-

vious histopathological GWASs have used discrete pathology grading schemes as quantitative traits.

Although such schemes are highly effective for guiding clinical decisions on the level of individual patients

and can in principle identify disease variants in GWASs (Chalasani et al., 2010), they do not scale well to the

hundreds or thousands of samples needed owing to inter- and intra-observation bias (Colquhoun et al.,

2003; Layfield et al., 2017; Qureshi et al., 2016). Unbiased, automatically extracted, continuous features

have been shown to improve the predictive power of survival analyses with pathology data in comparison

with discrete grades (Khan et al., 2017; Yu et al., 2016). GWASs using quantitative image features extracted

from radiological imaging data have successfully identified COPD-relevant variants using computed to-

mography (Cho et al., 2015) and variants related to Alzheimer’s disease and mild cognitive impairment

using magnetic resonance imaging (Shen et al., 2010). Thus, genome association studies that leverage

automated imaging analysis methodologies can be highly effective. With quantitative image analysis

now routinely applied to digital pathology datasets (Beck et al., 2011; Khan et al., 2017; Popovici et al.,

2016; Yu et al., 2016; Yuan et al., 2012), it is clear that unbiased, continuous image features can readily

be extracted for histopathological GWAS variant discovery.
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Nevertheless, little attention has been paid to the use of cellular imaging to obtain quantitative traits for

understanding the connection between genotype and cellular phenotypes. Part of the reason for this

may be that there are few available datasets for which both genomic profiling and standardized histopa-

thology data are available for any appreciable number of samples. The Genotype-Tissue Expression

(GTEx) resource (GTEx Consortium, 2015; Lonsdale et al., 2013) has collected germline genotype data

from over 450 autopsy research subjects, as well as standardized histological imaging and RNA sequencing

(RNA-Seq) gene expression from approximately 50 different body sites.

One of the tissues for which there is substantial histological imaging data is the thyroid. The thyroid plays a

central role in the endocrine system, producing thyroid hormones that influence protein synthesis and

metabolism. Hashimoto thyroiditis (HT) is an autoimmune disease affecting approximately 5% of the pop-

ulation, in which the thyroid is slowly destroyed, frequently leading to hypothyroidism, particularly in

women (Pyzik et al., 2015). Among the GTEx population there are 341 individuals for whom paired thyroid

imaging and gene expression data were available; of these, 31 had morphological evidence of HT accord-

ing to GTEx pathology notes. Leukocyte infiltration is a morphological hallmark of HT and necessary for

disease progression. We saw this dataset as an ideal place to test the hypothesis that cellular imaging

features could be used to discover immune cell infiltration variants in an image quantitative trait locus

(iQTL) analysis.
RESULTS AND DISCUSSION

Quantitative Image Analysis

Image data were downloaded from the GTEx histological image archive and convolved with a Gaussian

filter to smooth out pixel-level variation on a length scale smaller than that of observed regions of leukocyte

invasion in HT samples. Color deconvolution to estimate the H&E channels directly was not performed to

avoid the risk of introducing any biases from the deconvolution process that might negatively affect down-

stream QTL fits. Individual tissue pieces were segmented using adaptive thresholding (Figure 1A), and 117

Haralick image features were extracted for each tissue piece using the Bioconductor image processing

package EBImage (Pau et al., 2010) (Transparent Methods). To capture patterns across multiple length

scales, we incorporated three Haralick scales that sampled every 1, 10, or 100 pixels. Haralick features

are widely used for the quantification of image texture, and correlations between neighboring pixels in

an image are taken into account (Haralick, 1979). Given that lymphocyte invasion has a profound effect

on histological image texture, we reasoned that Haralick features could be ideal candidates for capturing

HT cellular phenotype. After removing overly small tissue pieces, averaged image feature values were

calculated across pieces to give a single value for each sample and feature. In preparation for downstream

model fitting, features were log2 transformed and centered and rescaled using a Z score to ensure feature

comparability across samples (Figure 1B). The mean and SD values used for the Z score were saved for use

in later analyses. A fully worked through image analysis example with the applied segmentation parameters

is supplied as part of a supplemental R data package (https://github.com/josephbarry/iQTL).

To reduce the number of candidate features and to identify the primary directions of variability in our image

featurematrix, we performed principal-component analysis (PCA) and found that the first two imaging prin-

cipal components (PCs) were sufficient to explain 73% of the variance. By inspection of the images, low

values of PC1 were found to be associated with interior holes in the thyroid pieces (Figure S1A), an effect

we adjudged to be primarily technical in origin. High values of image PC2 were visually strongly associated

with the presence of invading leukocytes (Figure S1B).

For validation of image PC2 using clinical metadata, we identified all samples for which an HT phenotype

was indicated in the comments of the original GTEx pathologists (Figure 1C blue points). We note that the

morphological phenotype of HT is not definitive evidence of clinical HT, which requires assessment of thy-

roid hormone levels, ultrasonographic scanning, and additional clinical findings (Anila et al., 2016).

A receiver operating characteristic (ROC) analysis showed that image PC2 was a highly performant

biomarker for HT phenotype, with an area under the curve (AUC) of 0.84 (Figure 1D). Using logistic regres-

sion, we found that HT phenotype was significantly associated with image PC2 (odds ratio [OR] = 1.3,

P = 1.43 10�9) after correcting for sex and age (TransparentMethods). A higher association with HT pheno-

type for women was also observed after correcting for age (OR = 4.2, P = 4 3 10�4), a known clinical char-

acteristic of the disease (Pyzik et al., 2015). That image PC2 is a performant biomarker for HT phenotype

likely does not have direct clinical application since a pathologist can easily identify HT morphology by
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Figure 1. Thyroid Image Processing and Establishment of a Quantitative Imaging Biomarker for Immune Cell

Infiltration

(A) Digital pathology slide for thyroid sample GTEX-11NV4. Raw: before image processing. Blurred: post Gaussian

convolution. Segmented: tissue piece masks after adaptive thresholding.

(B) Heatmap of 117 log2 transformed and standardized Haralick image features against 341 thyroid samples.

(C) PC1 versus PC2 from a PCA of the image feature matrix. Blue points indicate patients with Hashimoto thyroiditis, as

identified from pathology notes. Circles indicate females and triangles males.

(D) ROC showing biomarker performance of PC2 for predicting HT.

(E) Top row, five thyroid samples with highest values of image PC2. Bottom row, local image PC2 signal. Bright regions

correspond to high local image PC2. Image brightness has been rescaled to aid visualization.
inspection of pathology images; we considered its utility to be for downstream integration with genomic

data.

Since the fibrous variant of clinical HT accounts for up to 10% of cases (Iannaci et al., 2013) we investigated

co-occurrence of HT and fibrotic phenotypes in GTEx pathology notes. We found that 9/31 samples with

HT phenotypes also had fibrotic phenotypes, which was significantly enriched compared with the back-

ground set of non-HT samples (Fisher’s test; P = 0.002, OR = 4.2). However, samples with both HT and

fibrotic phenotypes did not show any clear classification pattern in the image PC1 vs PC2 plot (Figure S2A)

that would suggest segregation by disease subtype.

Next, we inspected PC2 feature loadings from the image PCA (Table S1). These represented the weighted

contribution of each Haralick feature to image PC2. We found that no single feature had a notably higher

magnitude of loading than any other, showing that signals from many different Haralick features were

required (Figure S2B). To assess the relative contribution of each RGB color channel we summed the

absolute value of PC2 principal component loadings for all features extracted fromeach channel. Proportion-

ately, we found that the red channel features contributed 47%, the green channel 28%, and the blue channel

26% to the image PC2 signal. This was suggestive of eosin contributing the most to the observed signal.

To verify that the image PC2 signal was originating from regions of immune infiltrate, we mapped image

PC2 signal to tiles of size 250 3 250 pixels using the following procedure. Haralick features were extracted

within each tile, log2 transformed, and centered and rescaled using a Z score. Crucially, the mean and SD

values used for the Z score were those calculated previously when estimating feature variability across
82 iScience 5, 80–89, July 27, 2018



Figure 2. Integration of Imaging Data with Gene Expression Analyses Verifies that Image PC2 Is Highly

Associated with Immune Cell Infiltration

(A) A QQ plot of p values (PG) from the regression analysis of image PC1 and PC2 against thyroid gene expression for

23,993 genes.

(B) Correlation of image PC2 with �log10(PC) from the CIBERSORT analysis for samples with PC<0.5. Blue points are

samples for which Hashimoto thyroiditis was indicated in GTEx pathology notes.

(C) Frequencies of immune cell types reported from CIBERSORT for samples with PC<0.1. Cell types with an average

frequency of 5% or more are shown.
samples. The resulting feature values were then multiplied by their corresponding image PC2 component

loading (Figure S2B) and summed together to give the final estimate for local image PC2. Figure 1E shows

the local image PC2 signal for the five samples with the highest image PC2 signal in Figure 1C. Bright

regions indicate where local image PC2 signal is the highest (Figure 1E bottom row) and can be seen to

correspond directly to dark regions of dense immune infiltrate in the original images (Figure 1E top row).

Integrated RNA-Seq and Image Analysis: Imaging Biomarker Validation

Next, we analyzed GTEx gene expression data associated with the 341 thyroid images. After the removal of

lowly expressed genes, counts were log2 transformed and quantile normalized to ensure comparability of

samples (Transparent Methods). To test for associations between gene expression and image PCs, linear

models were used to fit each image PC against normalized gene readouts while correcting for age, sex,

sample collection site, tissue autolysis score, and RNA extraction type. To remove bias caused by unknown

confounders (Figure S3A) we fitted 20 PEER (Probabilistic Estimation of Expression Residuals) factors

(Stegle et al., 2012) to the gene expression data while including the known confounders in the PEER fit;

a similar approach was used by the GTEx consortium (Aguet et al., 2017; GTEx Consortium, 2015). The first

PEER factor was not included as a covariate in the linear model fits owing to the strength of its correlation

with our image PC2 biomarker (Pearson r = 0.53, P < 2.2 3 10�16), which indicated that it likely contained

valuable biological information. Although other PEER factors may capture both biological signal and sys-

tematic noise, their inclusion as covariates successfully removed the technical bias observed in Figure S2A.

The results from fits correcting for the known confounders as well as the 19 remaining PEER factors revealed

that image PC2 was systematically and highly associated with gene expression (Figure 2A), suggesting that

leukocyte infiltration is at least a major, if not the primary, source of expression variability in GTEx thyroid

tissue. In contrast, image PC1 had comparatively few significant associations with thyroid gene expression

(Figure 2A).
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GO Id Type Description Odds P Padj N

GO:0050776 BP Regulation of immune response 6.10 1.3 3 10�14 5.8 3 10�11 43

GO:0031295 BP T cell costimulation 5.83 6.0 3 10�11 2.1 3 10�7 32

GO:0042110 BP T cell activation 5.57 2.6 3 10�8 3.6 3 10�5 24

GO:0042113 BP B cell activation 8.67 7.0 3 10�8 8.6 3 10�5 17

GO:0045060 BP Negative thymic T cell selection 25.51 6.7 3 10�7 5.4 3 10�4 10

GO:0050690 BP Regulation of defense response to virus by virus 6.96 2.1 3 10�6 1.5 3 10�3 15

GO:0042101 CC T cell receptor complex 17.00 2.5 3 10�6 1.6 3 10�3 10

Table 1. Gene Set Enrichment Analysis

Significant gene ontology terms for genes highly associated with image PC2 (�log10(PG) > 10, see Figure 2A) in the gene

expression regression analysis. All terms with an odds ratio of greater than 5 and an adjusted p value of less than 0.01 are

shown. BP, biological process; CC, cellular component.
To identify which biological pathways may drive the significant image PC2 associations with gene expres-

sion we performed gene set enrichment analysis, choosing as a test set 2,913 genes with�log10(PG) > 10 in

the gene expression analysis and all other 21,080 genes as a background set (Transparent Methods).

Significant enrichment was observed for a number of gene ontology terms related to immune function

and the activation and signaling activity of invading T and B lymphocytes (Table 1).

To confirm the association between image PC2 and the presence of invading immune cells on the level of

individual samples, we ran our gene expression data through CIBERSORT, an algorithm designed to de-

convolve complex cell mixtures (Newman et al., 2015). The LM22 leukocyte gene signature matrix supplied

by the CIBERSORT team was used to perform the deconvolution as it could in principle detect and distin-

guish between a number of T and B cell types. As expected, CIBERSORT failed to detect immune cells

in the majority of healthy thyroid samples. However, in samples in which immune cells were detected

(CIBERSORT PC<0.5), the significance of detection correlated significantly with image PC2 (Figure 2B;

Spearman r = 0.67, P = 3 3 10�7). Figure 2C shows the cell type signature for samples with PC<0.1 and

cell types with an average CIBERSORT frequency of more than 5% across samples. This analysis confirmed

the presence of T cell CD4 memory resting, T cell CD8, naive and memory B cells, as well as other immune

cell types, on the level of individual samples.

The CIBERSORT algorithm also detected infiltrating immune cells in several samples for which image PC2

was high but HT phenotype was not indicated by GTEx pathologists (Figure 2B gray points), suggesting

that our imaging biomarker may be able to detect a broader spectrum of thyroid autoimmune processes.

By inspection, we confirmed that many of these images did show infiltrative phenotypes but did not

exhibit the classical HT visual phenotype (for example, GTEX-OXRO, GTEX-144FL). One possible clinical

application of our imaging approach would therefore be to automatically flag such samples for rechecking

by pathologists.

To demonstrate the advantage of using PCA for the identification of a candidate imaging biomarker, as

opposed to directly using the individual Haralick image features, we correlated each of the 117 image fea-

tures with CIBERSORT significance of detection for immune cells, in the same manner as described earlier.

Image PC2 had a higher Spearman correlation coefficient than all image features, with the closest having a

coefficient of r = 0.60 (Figure S2B). Thus, image PC2 combined information frommultiple image features to

attain a higher overall performance.

iQTL Identification of Variants Associated with Immune Infiltration

Based on our analysis of image features and gene expression, we decided to use image PC2 as a quanti-

tative trait capturing the cellular features of immune cell infiltration in an iQTL analysis. Since we did not

have sufficient sample size to achieve high power in a genome-wide iQTL analysis that would include mil-

lions of variants, and other suitably large datasets were not available, we decided to reduce the search

space by asking a more targeted question of the data.
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Figure 3. An ImageQTL Analysis Finds Associations betweenGenomic Variants andOur Image PC2 Biomarker for

Thyroid Autoimmune Disease

(A) Selection of 1,380 candidate genes (blue points) based on their positive fold-change (log2(FC) > 0.5) and significant

differential expression (�log10(Padj) > 7) in GTEx samples with Hashimoto thyroiditis (HT) phenotypes.

(B) A QQ plot showing expected vs observed p values from image QTL fits of 100,215 candidate SNPs residing in the

selected genes highlighted blue in panel A.

(C and D)�log10(P) vs genomic coordinates for GTEx iQTLs (top panels) and eMERGE variant association with HT (bottom

panels) for all tested SNPs in HDAC9 (C) and TXNDC5 (D). Blue vertical lines indicate the locations of the most significant

SNP for each gene after multiple testing correction using the IHW method described in the main text. Plot ranges are

mapped to the start and end positions of the genes, as defined by GTEx-consortium transcript data. Horizontal green

bars are of length 50 kb.
Since leukocyte invasion was associated with a higher prevalence of differentially upregulated genes (Fig-

ure 3A) we hypothesized that the genotype of upregulated genes in GTEx samples with an HT phenotype

could in part determine the extent of leukocyte infiltration. Therefore, the analysis was further restricted to

100,215 candidate SNPs residing in 1,380 genes that were significantly (�log10(Padj) > 7, Figure S4A) and

positively (log2(Fold-Change) >0.5) differentially expressed in 31 HT cases versus 310 controls (Figure 3A

blue points) using DESeq2 (Love et al., 2014). We note that HT phenotype, as indicated by GTEx patholo-

gists, was not included in the feature set used to build our imaging biomarker. Therefore, the SNP selection

procedure was independent of the biomarker subsequently used as the quantitative trait in the iQTL

analysis.

We then limited our analysis to the 292 samples that had both thyroid imaging and genotype information.

The genotype data had already undergone rigorous quality control and filtering by the GTEx consortium,
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including but not limited to Hardy-Weinberg equilibrium and imputation quality criteria. Owing to sample

size considerations, minor allele frequencies (MAFs) of less than 10% were removed, as well as SNPs with a

missingness frequency of more than 10%.

iQTL linear model fits were implemented using the R packageMatrixEQTL (Shabalin, 2012) by treating im-

age PC2 as a pseudo trans gene. Fits were corrected for age, sex, race, ancestry, processing center, and

tissue autolysis score (Transparent Methods). A QQ plot comparing the distribution of observed p values

to the expected uniform distribution showed that the data were well behaved under the null hypothesis

(Figure 3B), with a departure from the dashed line for a group of SNPs with low p values. Independent hy-

pothesis weighting (IHW) (Ignatiadis et al., 2016) using MAF as the independent covariate was used to

correct for multiple testing. In a data-driven way, this method assigned different weights to variants based

on their MAF (Figure S4B) to maximize the number of null hypothesis rejections while controlling for type I

error. A total of 21 SNPs across 3 haplotype blocks were identified as being significant (PIHW<0.05;

Table S2). As expected, IHW attained higher power as compared with standard, unweighted Benjamini

and Hochberg false discovery rate (FDR) (Table S2).

Strikingly, 20 of the 21 significant SNPs resided in Histone Deacetylase 9 (HDAC9), an enzyme linked to

epigenetic control of gene transcription and previously proposed to be an epigenetic switch for T-cell-

mediated autoimmunity (Yan et al., 2011). Histone deacetylase inhibitors have been effective in the treat-

ment of hypothyroidism in mice (Kim et al., 2014) and autoimmune diseases in general (Tang et al., 2013).

A plot of SNP significance along HDAC9 revealed a sharp peak at 18,301 kb on chromosome 7 (Figure 3C).

To our knowledge this is the first reported association between HDAC9 variants and thyroid immune

cell infiltration. A search of GWAS Central (www.gwascentral.org [Beck et al., 2014]) identified modest

associations between ulcerative colitis (UC) and two of our significant iQTL variants (�log10(P) = 2.3 for

rs215122, �log10(P) = 2.7 for rs2529749) (Anderson et al., 2011). Although further work will be required

to investigate the biological effects of HDAC9 genotype in both UC and HT, a common genetic basis would

be consistent with evidence that these conditions present concurrently at higher rates than would be

expected in the general population (Shizuma, 2016).

One variant in the Thioredoxin Domain Containing 5 gene (TXNDC5), rs11962800, was found to be signif-

icant at the level of PIHW<0.05 (Table S2). TXNDC5 expression is induced by hypoxia (Sullivan et al., 2003),

and variants in this gene have been associated with a number of autoimmune diseases, including rheuma-

toid arthritis (Chang et al., 2011) and vitiligo (Jeong et al., 2010). As for HDAC9, variants in TXNDC5 have

not previously been associated with immune cell infiltration, again suggesting that iQTLs can uncover clin-

ically relevant associations. It should be noted that rs11962800 was reported as a cis-expression QTL in thy-

roid tissue by the GTEx consortium (P = 7.7 3 10�21; www.gtexportal.org [Aguet et al., 2017]). Since our

analysis shows that TXNDC5 expression is associated with leukocyte invasion in thyroid tissue, it is possible

that any expression-based result could be biased by cell-type mixing, as has been highlighted in GTEx lung

tissue (McCall et al., 2016). However, rs11962800 was also a reported eQTL in 16 other GTEx tissues (Aguet

et al., 2017), with thyroid ranked 3/17 in terms of highest significance. Next, we relaxed the IHW-adjusted

p value cutoff for iQTLs to 0.4 and found that the top five iQTLs in TXNDC5 were also eQTLs (Table S3).

In addition, 12/31 of the GTEx TXNDC5 eQTLs overlapping with our set of tested variants were iQTLs or

in linkage disequilibrium with iQTLs (Figure S5 red points). Together, these results offer the mechanistic

hypothesis that genetic variation in TXNDC5 affects HT imaging phenotype directly through cis-regulation

of RNA expression levels.

Next, we asked how the performance of our imaging biomarker might compare with expression-based bio-

markers for immune infiltration variant discovery. We chose the first expression PEER factor (PEER1) as a

comparative candidate biomarker based on the earlier observation that it was significantly correlated

with image PC2. After verifying that PEER1 was performant for predicting HT phenotype (AUC 0.88, Fig-

ure S6A), we ran another QTL analysis using the same 100,215 variants as for the iQTL analysis but with

PEER1 as the response variable. A QQ plot revealed that PEER1 performed poorly (Figure S6B), with no sig-

nificant QTL hits. Therefore, image PC2 was in this case a superior choice of biomarker for variant discovery.
Validation of iQTL Results Using an Independent Dataset

To attempt validation of the observed associations between HDAC9 and TXNDC5 genotype, and thyroid

immune cell infiltration in an independent dataset, we obtained genotype and phenotype data and clinical
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metadata from the Electronic Medical Records and Genomics (eMERGE) network (Gottesman et al., 2013)

(Transparent Methods). This dataset has been used previously for hypothyroidism variant discovery (Denny

et al., 2011). Criteria for defining HT cases included the assessment of thyroid-stimulating hormone (TSH)

and free T4 (FT4) levels (Transparent Methods). Although levels of biochemical markers are not necessarily

correlated with morphological grading of HT, immune cell infiltration is pathognomonic of the disease

(Anila et al., 2016). An increased prevalence of immune cell infiltration is therefore likely to be present in

a large set of HT cases vs controls.

We selected 1,261 individuals with chronic autoimmune hypothyroidism (presumptive HT) and 4,457 non-

hypothyroidism control subjects (Transparent Methods). As over 96% of the hypothyroidism cases

were from the Caucasian cohort, and 250/292 of the GTEx samples used for the iQTL analysis were of

European American descent, to simplify the analysis all non-Caucasian cohorts were removed, leaving

1,213 individuals with chronic autoimmune hypothyroidism and 3,789 control subjects. For consistency

with the iQTL analysis, SNPs with a minor allele frequency of less than 10% and a missingness frequency

of more than 10% were removed. One SNP in HDAC9 was removed owing to deviation from the Hardy-

Weinberg equilibrium (Transparent Methods).

We used logistic regression to test for associations between hypothyroidism status and HDAC9 and

TXNDC5 genotype while correcting for patient age (decade of birth), sex, collection site, and ancestry

(Transparent Methods). For both genes, the location of the most significant GTEx iQTL peaks, as deter-

mined by their IHW-adjusted p values, coincided closely with the highest eMERGE peaks (Figures 3C

and 3D vertical lines). Although a colocalization analysis did not identify a single causative SNP common

to both datasets, we noted a high degree of similarity between the association profiles. To quantitatively

assess the concordance of the association signatures between the GTEx and eMERGE data, we first

selected the SNPs common to both datasets and grouped neighboring SNPs into bins of size 20 SNPs

based on their genomic coordinates. The lowest p value in each bin was then selected for both datasets.

A correlation test revealed that the association signatures between eMERGE and GTEx data were

significantly concordant across both HDAC9 (Figure S7A1; Spearman r = 0.59, P < 2.93 10�6) and TXNDC5

(Figure S7A2; Spearman r = 0.73, P = 9 3 10�4).

Next, we checked if linkage disequilibrium (LD) could be artificially driving the observed concordance.

SNPs were pruned for LD using PLINK (Transparent Methods), and the binning and correlation analysis

was repeated. To account for the reduction in the number of SNPs (HDAC9, 1,071 to 330; TXNDC5,

347 to 88), smaller bin sizes of six and five SNPs were used for HDAC9 and TXNDC5, respectively. A corre-

lation test revealed amoremodest but still significant correlation for HDAC9 (Spearman r = 0.30, P = 0.026)

and a significant correlation for TXNDC5 (Spearman r = 0.72, P = 0.001). Thus, HDAC9 concordance was

partially biased by LD, whereas TXNDC5 concordance was unaffected.

To verify that it was hypothyroidism status driving the concordance, we performed 1,000 permutations of

the hypothyroidism case/control labels in the eMERGE dataset and repeated the logistic regression,

binning, and correlation analyses between the LD-pruned GTEx and eMERGE data. The resulting permu-

tation p value did not reach significance for HDAC9 (P = 0.127), likely due to the lower nominal p values

remaining after the LD pruning. However, the TXNDC5 permutation value was significant (P = 0.006) and

demonstrated that it was unlikely to obtain the observed TXNDC5 concordance between eMERGE and

GTEx profiles by chance (Figures S7B1 and S7B2).

Although we validated our TXNDC5 association using eMERGE hypothyroidism status, there are limita-

tions to the validation approach. First, the analysis identified common regions of association rather

than individual causative SNPs. The colocalization analysis was likely hindered by the modest GTEx

sample size, and future iQTL studies may require higher numbers of samples to identify causative

SNPs. Second, the severity of the HT morphological phenotype and clinical hypothyroidism status

are not necessarily correlated (Anila et al., 2016), although immune cell infiltration is a prerequisite for

clinical HT. This may in part explain why higher nominal p values were observed in the GTEx data.

Another explanation might be that quantitative histological image analysis captures subclinical, as

well as clinical, disease phenotype as a smooth function, whereas binary categorizations of disease status

do not take into account informative subclinical disease cases or the morphological severity of the

disease phenotype.
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Our intuition, along with over a decade of progress in GWAS, tells us that genotype and phenotype are

associated in ways that can be quantitatively assessed. The growth of integrated data resources such as

GTEx, and the advancement of digital slide imaging technologies, provides the opportunity to explore

that association at the cellular level. This study demonstrates the potential of histopathological image-

based QTL profiling for de novo discovery of disease variants, especially when unbiased, continuous,

automatically extracted image features are used as quantitative traits. Our results indicate that iQTLs

can identify different variants to cases vs controls GWAS, offering a complementary approach that lever-

ages cell-level phenotypes for target discovery. Although we applied iQTLs to a thyroid dataset, the

method is completely generalizable to other tissues and disease contexts. With larger sample sizes and

study designs tailored for specific diseases, iQTL scans can be extended to millions of variants. Ultimately,

digital pathology image analysis approaches could revolutionize genome-wide association studies by

providing a wealth of unbiased quantitative traits at the cellular level that have high levels of biological

interpretability.

METHODS

All methods can be found in the accompanying Transparent Methods supplemental file.
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Figure S1, Related to Figure 1. Examples of phenotypes associated with image PC1 and PC2. 
(A) Images with the 10 lowest values of PC1. Interior holes were observed, many of which were 
likely associated with tissue damage incurred during sample preparation. (B) Images with the 10 
highest values of PC2. Lymphocyte invasion phenotypes were apparent. 



 

Figure S2, Related to Figure 1 and Table S1. (A) PC1 versus PC2 from a PCA of the image 
feature matrix. Blue points indicate patients with both Hashimoto Thyroiditis and fibrotic 
phenotypes, as identified from pathology notes. Circles indicate females, and triangles males. (B) 
Haralick feature loadings from the second principal component of the image PCA, ranked by 
increasing value. Colors indicate RGB channels. 

 

Figure S3, Related to Figure 2. (A) QQ plot showing deviation from the dashed line (of slope 1) 
when fitting image PCs against gene expression while only correcting for the known 
confounders listed in the main text. Additionally including PEER factors as covariates removed 
the observed bias (Figure 2A). (B) Histogram of the absolute value of Spearman correlation 
coefficients between all 117 Haralick image features, and CIBERSORT significance of detection 
for immune cells. Dashed line indicates the Spearman correlation coefficient for image PC2 
(ρ=0.67). 



 

Figure S4, Related to Figure 3. (A) Gene expression vs fold-change (FC) between GTEx 
Hashimoto Thyroiditis cases and controls. Genes with an adjusted p-value of less than 10-7 are 
colored red. (B) Independent Hypothesis Weighting (IHW) weights as a function of minor allele 
frequency bin. Each bin corresponds to a change of 0.01 in minor allele frequency between 0.1 
and 0.5. Similar profiles for each fold demonstrate the robustness of the IHW fitting procedure. 

 

 

Figure S5, Related to Figure 3 and Table S3. Significance of GTEx consortium v6p cis-
expression QTLs for TXNDC5. Vertical blue line indicates the position of the top iQTL variant, 
rs11962800. Red points are eQTLs that are also iQTLs, or in linkage disequilibrium with iQTLs, 
as defined by a significance level of PIHW<0.4. All significant eQTLs that were also tested in our 
iQTL analysis are shown. Genomic range is the same as in Figure 3D for comparison.  



 

 

Figure S6, Related to Figure 3. (A) ROC showing biomarker performance of the first expression 
PEER factor (PEER1) for predicting Hashimoto Thyroiditis. (B) A QQ plot showing expected vs 
observed p-values from PEER1 QTL fits of 100,215 candidate SNPs residing in the selected 
genes highlighted blue in Figure 3A. 



 

Figure S7, Related to Figure 3. (A1-2) Concordance of the association signature between the 
GTEx and eMERGE data for HDAC9 (A1) and TXNDC5 (A2) for LD-pruned data. Each point 
represents the minimum p-value in each bin of size 15 SNPs for each dataset. (B1-2) Histograms 
of GTEx vs eMERGE correlation coefficients after 1,000 logistic regression analyses with 
permutations of the eMERGE hypothyroidism case/control labels. Dashed lines indicate 
Spearman correlation coefficients for the non-permuted data displayed in panels A1-2. 
Permutation p-values are 0.127 for HDAC9, and 0.006 for TXNDC5. 

 

 

 



 

Table S1, Related to Figure 1 and Figure S2. Principal component loadings for image PC2 are 
supplied in the supplementary excel file pc2loading.xlsx. Labeling follows the nomenclature 
[channel].h.[feature].s[scale] where channel indicates the RGB color channel, feature is one of 
Haralick’s 13 textural features, and scale gives the length scale over which features are assessed 
(1, 10, or 100 pixels; Transparent Methods). 

Table S2, Related to Figure 3. Image QTLs with significant associations (PIHW<0.05) with our 
quantitative imaging biomarker for thyroid autoimmune disease.  

rsid GRCh37/hg19 
Coordinates 

Gene PIHW FDR P β MAF Haplotype 

rs17346782(C>T) Chr7:18301455 HDAC9 0.049 0.100 5.8E-06 2.50 0.17 hap1 
rs12154277(G>T) Chr7:18313167 HDAC9 0.049 0.100 6.3E-06 1.91 0.43 hap2 
rs12672535(G>A) Chr7:18308913 HDAC9 0.049 0.100 6.6E-06 1.90 0.44 hap1 
rs6972958(G>T) Chr7:18313358 HDAC9 0.049 0.100 7.3E-06 1.90 0.44 hap2 
rs6973137(G>A) Chr7:18313517 HDAC9 0.049 0.100 7.3E-06 1.90 0.44 hap2 
rs4416737(C>T) Chr7:18305489 HDAC9 0.049 0.100 8.1E-06 1.91 0.43 hap1 
rs73066383(C>A) Chr7:18303874 HDAC9 0.049 0.100 9.3E-06 1.90 0.43 hap1 
rs12154412(G>A) Chr7:18304326 HDAC9 0.049 0.100 9.3E-06 1.90 0.43 hap1 
rs4361680(T>A) Chr7:18306817 HDAC9 0.049 0.100 9.3E-06 1.90 0.43 hap1 
rs7459237(C>A) Chr7:18307448 HDAC9 0.049 0.100 1.1E-05 1.89 0.43 hap1 
rs302193(G>A) Chr7:18298184 HDAC9 0.049 0.100 1.1E-05 1.82 0.45 hap1 
rs1107693(G>A) Chr7:18307906 HDAC9 0.049 0.100 1.2E-05 1.89 0.43 hap1 
rs17138868(A>T) Chr7:18294050 HDAC9 0.049 0.113 1.5E-05 1.83 0.43 hap1 
rs302178(G>A) Chr7:18310791 HDAC9 0.049 0.113 1.7E-05 1.80 0.44 hap1 
rs73066378(G>A) Chr7:18302581 HDAC9 0.049 0.113 1.8E-05 1.89 0.42 hap1 
rs7794278(G>A) Chr7:18316661 HDAC9 0.049 0.113 1.9E-05 1.82 0.43 hap2 
rs17138874(T>C) Chr7:18297439 HDAC9 0.049 0.140 2.5E-05 1.79 0.46 hap1 
rs6953847(C>T) Chr7:18300086 HDAC9 0.049 0.140 2.7E-05 1.80 0.44 hap1 
rs11962800(A>G) Chr6:7886905 TXNDC5 0.049 0.166 4.5E-05 -2.48 0.15 hap3 
rs7779273(T>C) Chr7:18301410 HDAC9 0.049 0.210 7.4E-05 1.69 0.46 hap1 
rs4721704(G>T) Chr7:18301777 HDAC9 0.049 0.262 1.1E-04 1.67 0.45 hap1 

Table S3, Related to Figure 3 and Figure S5. All iQTLs with PIHW<0.4 in TXNDC5 are also 
thyroid eQTLs in GTEx consortium data. 

rsid GRCh37/hg19 
Coordinates 

PIHW 
iQTL 

FDR 
iQTL 

P iQTL β 
iQTL 

MAF P eQTL β eQTL 

rs11962800(A>G) Chr6:7886905 0.049 0.166 4.5E-05 -2.48 0.15 7.7E-21 -0.71 
rs2757559(A>C) Chr6:7910352 0.061 0.286 1.3E-04 1.81 0.48 5.5E-07 -0.30 
rs12194931(G>A) Chr6:7913683 0.136 0.140 3.6E-05 -2.25 0.21 1.8E-07 -0.38 
rs3812162(T>G) Chr6:7911702 0.139 0.573 3.1E-04 1.63 0.48 1.2E-06 0.28 
rs7764128(G>A) Chr6:7882205 0.385 0.537 2.7E-04 -2.12 0.17 3.3E-22 -0.70 



Transparent Methods: 
Image Processing: 341 publicly available GTEx histopathological thyroid images were 
downloaded from the Biospecimen Research Database (http://brd.nci.nih.gov/image-
search/searchhome). For the purpose of segmenting individual tissue pieces only, the average 
intensity across color channels was calculated, and adaptive thresholding was performed to 
distinguish tissue from background. Interior holes in the tissue piece masks were filled using the 
fillHull function from the Bioconductor package EBImage (Pau et al., 2010). In preparation for 
feature extraction, Gaussian blurring was used on each color channel to smooth out pixel-level 
variation on a length scale smaller than the observed lymphocyte invasion phenotypes. 117 
textural Haralick features were then extracted using EBImage by calculating 13 base Haralick 
features for each of the three RGB color channels, and across three Haralick scales by sampling 
every 1, 10, or 100 pixels. Image metadata was extracted to verify identical pixel dimensions and 
scanning instrumentation across the dataset. 
Image Data Analysis: 702 thyroid pieces were identified from the image segmentation. 49 
pieces with overly small areas were removed. Averaged Haralick feature values were then 
calculated across tissue pieces for each sample. In preparation for downstream model fitting, 
each distribution was log2 transformed and rescaled using a Z-score. Five NA feature values were 
set to zero to avoid technical issues with the PCA fit. 

Gene Expression Analysis: GTEx v6 RNA-Seq data was downloaded from dbGaP 
(phs000424.v6.p1, 2015-10-05 release) under approved protocol #9112. Lowly expressed genes 
were defined as those which had a read count of less than 1 CPM in more than half of the 
samples, and were removed. Counts were log2 transformed after adding 1 to the counts to avoid 
the problem of taking the logarithm of zero. Quantile normalization was performed using the R 
package limma. Prior to running the gene expression data through CIBERSORT, RNA extraction 
batch was corrected for using limma. CIBERSORT analysis was performed at 
cibersort.stanford.edu after uploading gene expression data for the 341 GTEx thyroid samples. 
CIBERSORT default settings were used with 1,000 permutations and quantile normalization 
turned off since this step had been performed upstream. LM22 was chosen as the gene signature 
matrix. PEER factors were calculated using the R package peer (github: PMBio/peer). The 
fitting of image PCs against gene expression was performed using linear models in R with the 
formula 𝑃𝐶 = 𝛼 + 𝛽𝑔𝑒𝑛𝑒 + Σ+𝛾+𝑐𝑜𝑣𝑎𝑟𝑖𝑎𝑡𝑒+ + 𝜖 where covariates included the known 
confounders and PEER factors, as discussed in the main text. For each gene, p-values were 
extracted from t-statistics associated with the gene expression coefficient β. Differential 
expression analysis using DESeq2 (Love et al., 2014) was performed using the raw count data, 
with RNA extraction batch included as a technical covariate. As biological replicates were not 
available across samples, DESeq2 estimated dispersion by pooling all samples. 

Genotype Analysis: GTEx genotype data was downloaded from dbGaP (phs000424.v6.p1, 
2015-10-05 release) under approved protocol #9112. A total of 292 genotyped samples 
overlapped with the thyroid imaging samples. Minor allele frequency and missingness frequency 
filtering was performed using PLINK. QTL fits were performed using MatrixEQTL, which used 
the following model: 𝑃𝐶2 = 𝛼 + 𝛽𝑔𝑒𝑛𝑜𝑡𝑦𝑝𝑒 + Σ+𝛾+𝑐𝑜𝑣𝑎𝑟𝑖𝑎𝑡𝑒+ + 𝜖. Genotype could take on 
the values 0/1/2/NA, and covariates were as described in the main text. QTL significance was 
extracted from the t-statistics associated with the genotype coefficient β. The correction for 
ancestry was performed by including as covariates the first 3 PCs of a PCA on the genotype 
matrix computed from the full set of 450 GTEx patients. Haplotypes were identified using 



PLINK, with a maximum block size of 5,000 kb. The haplotype identification utilized the full set 
of 450 GTEx samples. LD-pruning was performed using PLINK with a window size of 50 SNPs 
and an r2 threshold of 0.8. Reported genomic coordinates are for human genome build 
GRCh37/hg19. 

eMERGE data was obtained from the study “eMERGE Network Imputed GWAS for 41 
Phenotypes” (dbGaP study accession phs000888.v1.p1) under approved protocol #13896 for the 
consent cohorts Health/Medical/Biomedical (N=18,621) and Health/Medical/Biomedical-
Genetic Studies Only-No Insurance Companies (N=15,911). Chromosome 6 and 7 genotype data 
from both cohorts was merged and 5,718 samples were selected based on their status as Chronic 
Autoimmune Hypothyroidism (accession phd004989.1) cases or controls. Inclusion criteria for 
hypothyroidism cases (C99269) included, but were not limited to, abnormal TSH/FT4 levels and 
the use of thyroid replacement medication. Exclusion criteria for hypothyroidism cases included 
secondary causes of hypothyroidism, hypothyroidism induced by surgery or radiation treatment, 
evidence of other thyroid diseases, or the use of thyroid-altering medication. Inclusion criteria 
for hypothyroidism controls (C99270) included no billing codes for hypothyroidism, no use of 
thyroid replacement medication, and normal TSH/FT4 levels. Exclusion criteria for controls 
included any evidence of hypo- or hyper-thyroidism, as well as other thyroid diseases, or the use 
of thyroid-altering medication. The Caucasian cohort was selected for further analysis, as 
described in the main text. Tests for Hardy-Weinberg Equilibrium (HWE) were performed using 
PLINK on the Caucasian cohort. One SNP in HDAC9 (rs2058074) had a HWE p-value less than 
10-6 and was removed. Logistic regression models were fitted with the glm function in R using 
the following model: 𝑙𝑜𝑔𝑖𝑡(𝑌) = 𝛼 + 𝛽𝑔𝑒𝑛𝑜𝑡𝑦𝑝𝑒 + Σ+𝛾+𝑐𝑜𝑣𝑎𝑟𝑖𝑎𝑡𝑒+. Y indicated the binary 
case/control disease status, genotype could take on the values 0/1/2/NA, and covariates were as 
described in the main text. The correction for ancestry was performed by including as covariates 
the first 3 PCs of a PCA on the genotype matrix computed from Chromosome 6 (for TXNDC9) 
and 7 (for HDAC9). Significance was extracted from the z-statistics associated with the genotype 
coefficient β. Colocalisation analysis was performed using the coloc.abf function from the R 
package coloc. Reported genomic coordinates are for human genome build GRCh37/hg19. 

Statistical Analysis: To test for associations between HT status and image PC2, we used the 
following logistic regression model: 𝑙𝑜𝑔𝑖𝑡(𝑌) = 𝛼 + 𝛽<𝑃𝐶2 + 𝛽=𝑠𝑒𝑥 + 𝛽@𝑎𝑔𝑒 where Y 
indicated samples with HT phenotype according to GTEx pathology notes. The significance of 
association was extracted from the z-statistics associated with the beta coefficients. Due to co-
linearity between sex and image PC2, associations between HT phenotype and sex were assessed 
using a reduced model without the image PC2 term. Enrichment of fibrotic phenotypes within 
the set of samples with HT phenotypes was assessed using Fisher’s Exact Test. Gene-set 
enrichment tests were performed using a Fisher’s Exact Test for each of the 13,776 tested Gene 
Ontology terms. Multiple-testing correction across terms was performed using the method of 
Benjamini and Hochberg. Independent Weighting Hypothesis p-value correction on the image 
QTL results was performed using the Bioconductor software IHW (Ignatiadis et al., 2016). The 
permutation p-values reported for the eMERGE validations were estimated using the formula 
(𝑀 + 1)/(𝑁 + 1) where M is the number of permutations with a correlation coefficient 
exceeding that of the non-permuted data, and N is the total number of permutations. Code and 
analysis reproducing paper figures, as well as reported analyses performed on non-protected 
data, are supplied as part of an R package hosted at https://github.com/josephbarry/iQTL. 
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